This paper begins with an overview of quantum mechanics, and then recounts a relatively recent algebraic extension of the Boolean algebra of probabilistic events to “conditional events” (order pairs of events). The ...This paper begins with an overview of quantum mechanics, and then recounts a relatively recent algebraic extension of the Boolean algebra of probabilistic events to “conditional events” (order pairs of events). The main point is to show that a so-called “superposition” of two (or more) quantum events (usually with mutually inconsistent initial conditions) can be represented in this algebra of conditional events and assigned a consistent conditional probability. There is no need to imagine that a quantum particle can simultaneously straddle two inconsistent possibilities.展开更多
文摘This paper begins with an overview of quantum mechanics, and then recounts a relatively recent algebraic extension of the Boolean algebra of probabilistic events to “conditional events” (order pairs of events). The main point is to show that a so-called “superposition” of two (or more) quantum events (usually with mutually inconsistent initial conditions) can be represented in this algebra of conditional events and assigned a consistent conditional probability. There is no need to imagine that a quantum particle can simultaneously straddle two inconsistent possibilities.