期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mirror-enhanced super-resolution microscopy 被引量:2
1
作者 Xusan Yang Hao Xie +6 位作者 Eric Alonas Yujia Liu Xuanze Chen philip j santangelo Qiushi Ren Peng Xi Dayong jin 《Light(Science & Applications)》 SCIE EI CAS CSCD 2016年第1期357-364,共8页
Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation,super-resolution microscopy.STimulated Emission Depletion(STED)nanoscopy offers lateral super-resolution using... Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation,super-resolution microscopy.STimulated Emission Depletion(STED)nanoscopy offers lateral super-resolution using a donut-beam depletion,but its axial resolution is still over 500 nm.Total internal reflection fluorescence microscopy is widely used for single-molecule localization,but its ability to detect molecules is limited to within the evanescent field of~100 nm from the cell attachment surface.We find here that the axial thickness of the point spread function(PSF)during confocal excitation can be easily improved to 110 nm by replacing the microscopy slide with a mirror.The interference of the local electromagnetic field confined the confocal PSF to a 110-nm spot axially,which enables axial super-resolution with all laser-scanning microscopes.Axial sectioning can be obtained with wavelength modulation or by controlling the spacer between the mirror and the specimen.With no additional complexity,the mirror-assisted excitation confinement enhanced the axial resolution six-fold and the lateral resolution two-fold for STED,which together achieved 19-nm resolution to resolve the inner rim of a nuclear pore complex and to discriminate the contents of 120 nm viral filaments.The ability to increase the lateral resolution and decrease the thickness of an axial section using mirror-enhanced STED without increasing the laser power is of great importance for imaging biological specimens,which cannot tolerate high laser power. 展开更多
关键词 CONFOCAL INTERFERENCE point spread function SUPER-RESOLUTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部