Magnetic resonance imaging(MRI)is a common clinical practice to visualize defects and to distinguish different tissue types and pathologies in the human body.So far,MRI data have not been used to model and generate a ...Magnetic resonance imaging(MRI)is a common clinical practice to visualize defects and to distinguish different tissue types and pathologies in the human body.So far,MRI data have not been used to model and generate a patient-specific design of multilayered tissue substitutes in the case of interfacial defects.For orthopedic cases that require highly individual surgical treatment,implant fabrication by additive manufacturing holds great potential.Extrusion-based techniques like 3D plot-ting allow the spatially defined application of several materials,as well as implementation of bioprinting strategies.With the example of a typical multi-zonal osteochondral defect in an osteochondritis dissecans(OCD)patient,this study aimed to close the technological gap between MRI analysis and the additive manufacturing process of an implant based on dif-ferent biomaterial inks.A workflow was developed which covers the processing steps of MRI-based defect identification,segmentation,modeling,implant design adjustment,and implant generation.A model implant was fabricated based on two biomaterial inks with clinically relevant properties that would allow for bioprinting,the direct embedding of a patient’s own cells in the printing process.As demonstrated by the geometric compatibility of the designed and fabricated model implant in a stereolithography(SLA)model of lesioned femoral condyles,a novel versatile CAD/CAM workflow was successfully established that opens up new perspectives for the treatment of multi-zonal(osteochondral)defects.展开更多
基金Open Access funding enabled and organized by Projekt DEAL.
文摘Magnetic resonance imaging(MRI)is a common clinical practice to visualize defects and to distinguish different tissue types and pathologies in the human body.So far,MRI data have not been used to model and generate a patient-specific design of multilayered tissue substitutes in the case of interfacial defects.For orthopedic cases that require highly individual surgical treatment,implant fabrication by additive manufacturing holds great potential.Extrusion-based techniques like 3D plot-ting allow the spatially defined application of several materials,as well as implementation of bioprinting strategies.With the example of a typical multi-zonal osteochondral defect in an osteochondritis dissecans(OCD)patient,this study aimed to close the technological gap between MRI analysis and the additive manufacturing process of an implant based on dif-ferent biomaterial inks.A workflow was developed which covers the processing steps of MRI-based defect identification,segmentation,modeling,implant design adjustment,and implant generation.A model implant was fabricated based on two biomaterial inks with clinically relevant properties that would allow for bioprinting,the direct embedding of a patient’s own cells in the printing process.As demonstrated by the geometric compatibility of the designed and fabricated model implant in a stereolithography(SLA)model of lesioned femoral condyles,a novel versatile CAD/CAM workflow was successfully established that opens up new perspectives for the treatment of multi-zonal(osteochondral)defects.