A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by...A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.展开更多
The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary ac...The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary action while allowing the water vapour transfer inside an innovative absorber technology. The complex menisci shape formed on the confinement grid level, where the surface tension forces are of first importance, are reconstructed by a volume-of-fluid model. A continuum surface force model is used to account for the surface tension force. A static contact angle is used to define the wall adhesion. A new algorithm, consisting to set an unique constant temperature at the liquid/vapour interface and to determine the evolution of heat transfer characteristics over the simulation domain, has been implemented and validated by analytical solution. A parametric study has been conducted to determine the effect of the geometry, the contact angle and the shape of the wire on the heat transfer.展开更多
文摘A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.
文摘The present study deals with the numerical analysis of heat transfer inside a lithium bromide-water solution flowing down between finely meshed plastic wire screens. These screens confine the flow through capillary action while allowing the water vapour transfer inside an innovative absorber technology. The complex menisci shape formed on the confinement grid level, where the surface tension forces are of first importance, are reconstructed by a volume-of-fluid model. A continuum surface force model is used to account for the surface tension force. A static contact angle is used to define the wall adhesion. A new algorithm, consisting to set an unique constant temperature at the liquid/vapour interface and to determine the evolution of heat transfer characteristics over the simulation domain, has been implemented and validated by analytical solution. A parametric study has been conducted to determine the effect of the geometry, the contact angle and the shape of the wire on the heat transfer.