期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
LIOUVILLE RESULTS FOR STABLE SOLUTIONS OF QUASILINEAR EQUATIONS WITH WEIGHTS
1
作者 phuong le Vu HO 《Acta Mathematica Scientia》 SCIE CSCD 2019年第2期357-368,共12页
This paper is devoted to the quasilinear equation ■where p > 2,Ω is a(bounded or unbounded) domain of R^N,w_1,w_2 are nonnegative continuous functions and f is an increasing function. We establish a Liouville typ... This paper is devoted to the quasilinear equation ■where p > 2,Ω is a(bounded or unbounded) domain of R^N,w_1,w_2 are nonnegative continuous functions and f is an increasing function. We establish a Liouville type theorem for nontrivial stable solutions of the equation under some mild assumptions on Ω,w_1, w_2 and f, which extends and unifies several results on this topic. 展开更多
关键词 QUASILINEAR EQUATIONS stable solutions NONEXISTENCE LIOUVILLE THEOREMS
下载PDF
CLASSIFICATION OF SOLUTIONS TO HIGHER FRACTIONAL ORDER SYSTEMS
2
作者 phuong le 《Acta Mathematica Scientia》 SCIE CSCD 2021年第4期1302-1320,共19页
Let 0<α,β<n and f,g∈ C([0,∞)×[0,∞))be two nonnegative functions.We study nonnegative classical solutions of the system{(-△)^(α/2)u=f(u,v)in R^(n),(-△)^(β/2)v=g(u,v)in R^(n),and the corresponding eq... Let 0<α,β<n and f,g∈ C([0,∞)×[0,∞))be two nonnegative functions.We study nonnegative classical solutions of the system{(-△)^(α/2)u=f(u,v)in R^(n),(-△)^(β/2)v=g(u,v)in R^(n),and the corresponding equivalent integral system.We classify all such solutions when f(s,t)is nondecreasing in s and increasing in t,g(s,t)is increasing in s and nondecreasing in i,and f(μ^(n-α)s,μ^(n-β)t)/μ^(n-α),g(μ^(n-α)s,μ^(n-β)t)/μ^(n-β)are nonincreasing in μ>0 for all s,t≥0.The main technique we use is the method of moving spheres in integral forms.Since our assumptions are more general than those in the previous literature,some new ideas are introduced to overcome this difficulty. 展开更多
关键词 Higher fractional order system integral system general nonlinearity method of moving spheres classification of solutions
下载PDF
Finite Morse Index Solutions of a Nonlinear Schr?dinger Equation
3
作者 phuong le 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第3期513-522,共10页
We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p... We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p>1,Our analysis reveals that all stable solutions of the equation must be zero for all p>1,Furthermore,finite Morse index solutions must be zero if N≥3 an p≥(N+2+2b)/(N-2).The main tools we use are integral estimates,a Pohozaev type identity and a monotonicity formula. 展开更多
关键词 Schrodinger equation Liouville type theorems stable solutions finite Morse index solutions monotonicity formula
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部