期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Does Life Need Water or Can It Be Generated by Other Fluids?
1
作者 piero chiarelli 《Open Journal of Biophysics》 2014年第1期29-38,共10页
In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interact... In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far-from-equilibrium kinetics for a real gas and its fluid phase. In gases and their liquids, interacting by Lennard-Jones potentials whose mean distance is bigger than the quantum correlation distance and the molecular interaction distance r0, it is possible to define a Fokker-Plank type equation of motion as a function of the mean phase space molecular volume that far-from-equilibrium shows maximizing the dissipation of a part of the generalized SQHA-free energy. In the case of a real gas with no chemical reactions with small temperature gradients, the principle disembogues into the maximum free energy dissipation confirming the experimental outputs of electro-convective instability. In this case, the model shows that the transition to stationary states with higher free energy can happen and that in incompressible fluids, the increase of free energy is almost given by a decrease of entropy leading to the appearance of self-ordered structures. The output of the theory showing that the generation of order via energy dissipation, is more efficient in fluids than in gases, because of their incompressibility, which leads to the reconciliation between physics and biology furnishing the explanation why the life was born in water. The theoretical output also suggests that the search for life out of the earth must consider the possibility to find it in presence of liquid phases different from water. 展开更多
关键词 Order Generation FAR from Equilibrium Kinetics MATTER SELF-ASSEMBLING Maximum Free Energy DISSIPATION Minimum Entropy Production
下载PDF
Ultrasound Poroelastic Tissue Typing
2
作者 piero chiarelli Bruna Vinci +2 位作者 Antonio Lanatà Valeria Gismondi Simone chiarelli 《Open Journal of Acoustics》 2011年第3期55-62,共8页
Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a gel medium filled by poroelastic spherical cells is studied. The equation of fast compressional wave, the phase velocity... Employing the poroelastic theory of acoustic waves in gels, the ultrasound (US) propagation in a gel medium filled by poroelastic spherical cells is studied. The equation of fast compressional wave, the phase velocity and the attenuation as a function of the elasticity, porosity and concentration of the cells into the gel matrix are investigated. The outcomes of the theory agree with the preliminary measurements done on PVA gel scaffolds inseminated by porcine liver cells at various concentrations. The feasibility of a non-invasive technique for the health assessment of soft biological tissues steaming by the model is analyzed. 展开更多
关键词 ULTRASOUND Bi-Phasic Model of LIVING TISSUES NON-INVASIVE ULTRASOUND Assessment POROELASTIC ULTRASOUNDS in Soft TISSUES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部