Thatch fibres grow in large quantity in the Adamawa region of Cameroon. During the long dry season, these fibres cause numerous fire incidents, which not only devastate large areas of cash crops, but also contribute t...Thatch fibres grow in large quantity in the Adamawa region of Cameroon. During the long dry season, these fibres cause numerous fire incidents, which not only devastate large areas of cash crops, but also contribute to increase emissions of greenhouse gases into the atmosphere. This article aims to show how fibres could be used with compressed clay bricks to manufacture an insulating material used in building. Four fibre contents 1%, 2%, 3% and 4% made up the sample studied. The asymmetric hot plate methodology was used to determine the thermophysical properties of these composite materials. The volumetric heat capacity and the thermal effusivity of these materials were estimated. These two parametres were used to determine their apparent thermal conductivities. The results obtained show that the thermal conductivity decreases as the volume of fibres in the mixture increases. It is 0.689 W·m-1·K-1 for simple compressed clay bricks and 0.510 W·m-1·K-1 for a dosage at 3% of thatch fibres. In a bit to validate the results of the pilot study of the apparent thermal conductivity, the heat mass capacity of this composite material was achieved through the use of the dehydration method. The relative difference obtained with the results of the volumetric heat capacity carried out with these two methods was good. All results showed that the use of fibres in compressed laterite brick gives a more insulating composite material that respects Civil Engineering Norms.展开更多
文摘Thatch fibres grow in large quantity in the Adamawa region of Cameroon. During the long dry season, these fibres cause numerous fire incidents, which not only devastate large areas of cash crops, but also contribute to increase emissions of greenhouse gases into the atmosphere. This article aims to show how fibres could be used with compressed clay bricks to manufacture an insulating material used in building. Four fibre contents 1%, 2%, 3% and 4% made up the sample studied. The asymmetric hot plate methodology was used to determine the thermophysical properties of these composite materials. The volumetric heat capacity and the thermal effusivity of these materials were estimated. These two parametres were used to determine their apparent thermal conductivities. The results obtained show that the thermal conductivity decreases as the volume of fibres in the mixture increases. It is 0.689 W·m-1·K-1 for simple compressed clay bricks and 0.510 W·m-1·K-1 for a dosage at 3% of thatch fibres. In a bit to validate the results of the pilot study of the apparent thermal conductivity, the heat mass capacity of this composite material was achieved through the use of the dehydration method. The relative difference obtained with the results of the volumetric heat capacity carried out with these two methods was good. All results showed that the use of fibres in compressed laterite brick gives a more insulating composite material that respects Civil Engineering Norms.