期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
AB040.Single-cell transcriptomics identifies cell-specific signatures of pathological angiogenesis
1
作者 Gael Cagnone Sheetal Pundir +9 位作者 Nick Kim Emilie Heckel Jin Sung Kim Perrine Gaub Florian Wunnemann piet van vliet Severine Leclerc Gregor Andelfinger Sylvain Chemtob Jean-Sebastien Joyal 《Annals of Eye Science》 2019年第1期215-215,共1页
Background:To treat vascular proliferative diseases,anti-VEGF therapies have shown systemic adverse effects attributable to the lack of selectivity between pathological and physiological angiogenesis.Thus,identifying ... Background:To treat vascular proliferative diseases,anti-VEGF therapies have shown systemic adverse effects attributable to the lack of selectivity between pathological and physiological angiogenesis.Thus,identifying the molecular mechanisms that are only specific to pathological cell types is crucial to develop better precision medicine.Methods:Here,we used different cell type enrichment approaches combined with single-cell RNA sequencing to define the transcriptomic changes within each retinal cell types in a mouse model of ischemic retinopathy.This retinal model develops pathological neovascularization(NV)in response to local hypoxia following oxygen-induced vessel obliteration(P7 to P12).The NV phenotype is characterized by the progressive appearance of vascular tufts resulting from misguided,abnormal proliferation of endothelial cells that we monitored at 3 consecutive time points-P12,P14 and P17(peak of NV).Results:By following the dynamic response to hypoxia,our experimental design reveals how pathological angiogenesis is specifically associated with significant metabolic adaptations in different subtypes of endothelial cells(i.e.,Tips vs Stalk cells).We also identify a pathological subtype of glial cells over-expressing VEGFA and pro-inflammatory IL-1 receptor subunits.This subtype of activated glial cells was targeted using selective IL1R antagonist treatment which reduced glial activation,inflammation,NV and promotes physiological angiogenesis,therefore improving tissue regeneration.Conclusions:Our results illustrate how analyzing cell type heterogeneity in tissues developing pathological angiogenesis allows establishing better targeting therapies to restore vascular integrity. 展开更多
关键词 Single-cell RNAseq ANGIOGENESIS pathological vascularization metabolism inflammation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部