Polyacrylonitrile beads(PAN) cysteine(CS) was synthesized from polyacrylonitrile beads(PAN) and cysteine(CS).The content of the functional group and the percentage conversion of the functional group of PAN-CS ...Polyacrylonitrile beads(PAN) cysteine(CS) was synthesized from polyacrylonitrile beads(PAN) and cysteine(CS).The content of the functional group and the percentage conversion of the functional group of PAN-CS prepared under the optimum condition using response surface methodology(RSM) for the first attempt were 3.22 mmol/g and 35.78%.The structure was characterized by ET-IR and elemental analysis.The adsorption properties of the resin for Cu(Ⅱ) were investigated by batch and column experiments.Batch adsorption results suggested that PAN-CS had higher adsorption capability for Cu(Ⅱ)than other metal ions and maximum saturated adsorption capacity was 184.7 mg/g.The resin and its metal complexes were studied by FT-IR.Furthermore,the resin can be eluted easily using 1 mol/L HC1.PAN-CS can provide a potential application for selective removal of copper from waste solution.展开更多
基金supported by the National Natural Science Foundation of China (No. 21276235)Ph.D. Programs Foundation of Ministry of Education of China (No. 20133326110006)+2 种基金The Program of Science and Technology of Zhejiang Province, China (No. 2015C3704)Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Sci-Tech University (No. YR2015002)Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology (No. 2005002)
文摘Polyacrylonitrile beads(PAN) cysteine(CS) was synthesized from polyacrylonitrile beads(PAN) and cysteine(CS).The content of the functional group and the percentage conversion of the functional group of PAN-CS prepared under the optimum condition using response surface methodology(RSM) for the first attempt were 3.22 mmol/g and 35.78%.The structure was characterized by ET-IR and elemental analysis.The adsorption properties of the resin for Cu(Ⅱ) were investigated by batch and column experiments.Batch adsorption results suggested that PAN-CS had higher adsorption capability for Cu(Ⅱ)than other metal ions and maximum saturated adsorption capacity was 184.7 mg/g.The resin and its metal complexes were studied by FT-IR.Furthermore,the resin can be eluted easily using 1 mol/L HC1.PAN-CS can provide a potential application for selective removal of copper from waste solution.