Inspired by the limitations of nanoparticles in cancer treatment caused by their low therapeutic effects and biotoxicity,biocompatible and photothermal enhanced copper oxide-decorated carbon nanospheres(CuO@CNSs)with ...Inspired by the limitations of nanoparticles in cancer treatment caused by their low therapeutic effects and biotoxicity,biocompatible and photothermal enhanced copper oxide-decorated carbon nanospheres(CuO@CNSs)with doxorubicin hydrochloride(DOX)loading were constructed.CNSs as photothermal agents were synthesized by a hydrothermal reaction.CuO was adsorbed on the surface of CNSs,which improved the photothermal conversion efficiency due to the electron transitions between C-2 p and Cu-3 d.In addition,CuO would release Cu2+ions in the tumor microenvironment,which could produce hydroxyl radical(·OH)to induce cancer cells apoptosis via Haber-Weiss and Fenton-like reactions.DOX as a chemotherapeutic agent was located on the surface of CuO@CNSs by electrostatic adsorption and released quickly in the tumor microenvironment to kill cancer cells.The CuO@CNSs-DOX nanoplatforms realized the combination therapy of photothermal therapy(PTT),chemodynamic therapy(CDT),and chemotherapy(CT),which have strong potential for cancer treatment.展开更多
The design and synthesis of multifunctional nanocarriers for efficient synergistic cancer therapy have drawn great research interests in recent years.In this work,a nanoplatform for chemo-photothermal therapy with tar...The design and synthesis of multifunctional nanocarriers for efficient synergistic cancer therapy have drawn great research interests in recent years.In this work,a nanoplatform for chemo-photothermal therapy with targeting ligand was developed.Hollow porous structured silica nanotubes(SNTs)with controllable lengths decorated with CuS nanoparticles(NPs)on the surface as photothermal agents were prepared and further conjugated with lactobionic acid groups as a cancer cell target.SNTs with average lengths of 40,55 and 150 nm were obtained and further functionalized as drug carriers.The smallest bifunctional SNTs with targeting groups show good biocompatibility and highest cellular uptake for HepG2 cells.The release of doxorubicin hydrochloride(DOX)from the SNTs was dependent on the p H of the buffer solution and 808-nm near infrared(NIR)light irradiation.The integration of photothermal therapy(PTT)of CuS NPs and chemotherapy of anticancer drug leads to a better tumor inhibition effect than the individual therapy alone in vitro and in vivo.These results demonstrate potential applications of the nanocomposites as vector for efficient chemo-photothermal therapy.展开更多
Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conven...Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conventional treatments,the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione(GSH).In this study,we aim to address this dual challenge by delving into the role of copper valence states in CDT.Leveraging the unique attributes of copper-based nanoparticles,especially zero-valent copper nanoparticles(CuPd NPs),we aim to enhance the therapeutic potential of CDT.Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles(Ox-CuPd NPs)by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like(POD-like)activity and Cu+release.Notably,zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts,thereby intensifying CDT and inducing ferroptosis,ultimately resulting in high-efficiency tumor growth inhibition.These findings reveal the impact of valences on CDT,providing novel insights for the optimization and design of CDT agents.展开更多
Compared with traditional photodynamic therapy(PDT),ultrasound(US)triggered sonodynamic therapy(SDT)has a wide application prospect in tumor therapy because of its deeper penetration depth.Herein,a novel MnSiO_(3)-Pt(...Compared with traditional photodynamic therapy(PDT),ultrasound(US)triggered sonodynamic therapy(SDT)has a wide application prospect in tumor therapy because of its deeper penetration depth.Herein,a novel MnSiO_(3)-Pt(MP)nanocomposite composed of Mn Si O_(3)nanosphere and noble metallic Pt was successfully constructed.After modification with bovine serum albumin(BSA)and chlorine e6(Ce6),the multifunctional nanoplatform Mn SiO_(3)-Pt@BSA-Ce6(MPBC)realized the magnetic resonance imaging(MRI)-guided synergetic SDT/chemodynamic therapy(CDT).In this nanoplatform,sonosensitizer Ce6 can generate singlet oxygen(^(1)O_(2))to kill cancer cells under US irradiation.Meanwhile,the loaded Pt has the ability to catalyze the decomposition of overexpressed hydrogen peroxide(H_(2)O_(2))in tumor microenvironment(TME)to produce oxygen(O_(2)),which can conquer tumor hypoxia and promote the SDT-induced^(1)O_(2)production.In addition,MP can degrade in mildly acidic and reductive TME,causing the release of Mn^(2+).The released Mn^(2+) not only can be used for MRI,but also can generate hydroxyl radical(^·OH)for CDT by Fenton-like reaction.The multifunctional nanoplatform MPBC has high biological safety and good anticancer effect,which displays the great latent capacity in biological application.展开更多
The cancer cells realize their proliferation and metastasis activities based on the special redox adaptation to increased reactive oxygen species(ROS)level,which inversely makes them sensitive to external interference...The cancer cells realize their proliferation and metastasis activities based on the special redox adaptation to increased reactive oxygen species(ROS)level,which inversely makes them sensitive to external interference with their redox state.In view of this,in recent decades,researchers have made great efforts to construct a series of novel nanoplatform-based ROS-mediated cancer therapies through increasing ROS generation and inhibiting the ROS elimination.Besides,the multidrug resistance and thermoresistance of tumor are closely related to tumor redox state.Recently,numerous works have shown that ROS regulation in cancer cells can intervene in the expression,function and stability of related proteins to achieve reversal of tumor resistance.In this review,the recent researches about ROS-regulating nanoagents on cancer therapy and tumor resistance alleviation have been well summarized.Finally,the challenges and research directions of ROS-regulating nanoagents for future clinical translation are also discussed.展开更多
Cassava,a tropical food,feed and biofuel crop,has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition,which makes it highly suitable as a model plant for tropical...Cassava,a tropical food,feed and biofuel crop,has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition,which makes it highly suitable as a model plant for tropical crops.However,the understanding of the metabolism and genomics of this important crop is limited.The recent breakthroughs in the genomics of cassava,including whole-genome sequencing and transcriptome analysis,as well as advances in the biology of photosynthesis,starch biosynthesis,adaptation to drought and high temperature,and resistance to virus and bacterial diseases,are reviewed here.Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars.Finally,the current challenges and future potential of cassava as a model plant are discussed.展开更多
基金supported by the National Natural Science Foundation of China(51720105015,51672269,51929201,51922097,51772124 and 51872282)the Science and Technology Cooperation Project between Chinese and Australian Governments(2017YFE0132300)+4 种基金the Science and Technology Development Planning Project of Jilin Province(20170101188JC and 20180520163JH)the Key Research Program of Frontier Sciences,CAS(YZDY-SSW-JSC018)the Youth Innovation Promotion Association of CAS(2017273)the Overseas,Hong Kong&Macao Scholars Collaborated Researching Fund(21728101)the CAS-Croucher Funding Scheme for Joint Laboratories(CAS18204)。
文摘Inspired by the limitations of nanoparticles in cancer treatment caused by their low therapeutic effects and biotoxicity,biocompatible and photothermal enhanced copper oxide-decorated carbon nanospheres(CuO@CNSs)with doxorubicin hydrochloride(DOX)loading were constructed.CNSs as photothermal agents were synthesized by a hydrothermal reaction.CuO was adsorbed on the surface of CNSs,which improved the photothermal conversion efficiency due to the electron transitions between C-2 p and Cu-3 d.In addition,CuO would release Cu2+ions in the tumor microenvironment,which could produce hydroxyl radical(·OH)to induce cancer cells apoptosis via Haber-Weiss and Fenton-like reactions.DOX as a chemotherapeutic agent was located on the surface of CuO@CNSs by electrostatic adsorption and released quickly in the tumor microenvironment to kill cancer cells.The CuO@CNSs-DOX nanoplatforms realized the combination therapy of photothermal therapy(PTT),chemodynamic therapy(CDT),and chemotherapy(CT),which have strong potential for cancer treatment.
基金supported by the National Natural Science Foundation of China(NSFC,51572257,51720105015,51672269,51929201,51922097,51772124 and 51872282)the Science and Technology Cooperation Project between Chinese and Australian Governments(2017YFE0132300)+4 种基金the Key Research Program of Frontier Sciences,CAS(YZDY-SSW-JSC018)the Overseas,Hong Kong&Macao Scholars Collaborated Researching Fund(21728101)the CAS-Croucher Funding Scheme for Joint Laboratories(CAS18204)Jiangmen Innovative Research Team Program(2017)the Major Program of Basic Research and Applied Research of Guangdong Province(2017KZDXM083)。
文摘The design and synthesis of multifunctional nanocarriers for efficient synergistic cancer therapy have drawn great research interests in recent years.In this work,a nanoplatform for chemo-photothermal therapy with targeting ligand was developed.Hollow porous structured silica nanotubes(SNTs)with controllable lengths decorated with CuS nanoparticles(NPs)on the surface as photothermal agents were prepared and further conjugated with lactobionic acid groups as a cancer cell target.SNTs with average lengths of 40,55 and 150 nm were obtained and further functionalized as drug carriers.The smallest bifunctional SNTs with targeting groups show good biocompatibility and highest cellular uptake for HepG2 cells.The release of doxorubicin hydrochloride(DOX)from the SNTs was dependent on the p H of the buffer solution and 808-nm near infrared(NIR)light irradiation.The integration of photothermal therapy(PTT)of CuS NPs and chemotherapy of anticancer drug leads to a better tumor inhibition effect than the individual therapy alone in vitro and in vivo.These results demonstrate potential applications of the nanocomposites as vector for efficient chemo-photothermal therapy.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3804500)the National Natural Science Foundation of China(Nos.52102354,52102180,52202353,and 52372273)the Science and Technology Development Planning Project of Jilin Province(Nos.20220101070JC,20220508089RC,and 20210402046GH).
文摘Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conventional treatments,the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione(GSH).In this study,we aim to address this dual challenge by delving into the role of copper valence states in CDT.Leveraging the unique attributes of copper-based nanoparticles,especially zero-valent copper nanoparticles(CuPd NPs),we aim to enhance the therapeutic potential of CDT.Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles(Ox-CuPd NPs)by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like(POD-like)activity and Cu+release.Notably,zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts,thereby intensifying CDT and inducing ferroptosis,ultimately resulting in high-efficiency tumor growth inhibition.These findings reveal the impact of valences on CDT,providing novel insights for the optimization and design of CDT agents.
基金the National Natural Science Foundation of China(NSFC,Nos.51720105015,51972138,51929201,51922097,51772124 and 51872282)the Science and Technology Cooperation Project between Chinese and Australian Governments(No.2017YFE0132300)the Key Research Program of Frontier Sciences,CAS(No.YZDY-SSW-JSC018)。
文摘Compared with traditional photodynamic therapy(PDT),ultrasound(US)triggered sonodynamic therapy(SDT)has a wide application prospect in tumor therapy because of its deeper penetration depth.Herein,a novel MnSiO_(3)-Pt(MP)nanocomposite composed of Mn Si O_(3)nanosphere and noble metallic Pt was successfully constructed.After modification with bovine serum albumin(BSA)and chlorine e6(Ce6),the multifunctional nanoplatform Mn SiO_(3)-Pt@BSA-Ce6(MPBC)realized the magnetic resonance imaging(MRI)-guided synergetic SDT/chemodynamic therapy(CDT).In this nanoplatform,sonosensitizer Ce6 can generate singlet oxygen(^(1)O_(2))to kill cancer cells under US irradiation.Meanwhile,the loaded Pt has the ability to catalyze the decomposition of overexpressed hydrogen peroxide(H_(2)O_(2))in tumor microenvironment(TME)to produce oxygen(O_(2)),which can conquer tumor hypoxia and promote the SDT-induced^(1)O_(2)production.In addition,MP can degrade in mildly acidic and reductive TME,causing the release of Mn^(2+).The released Mn^(2+) not only can be used for MRI,but also can generate hydroxyl radical(^·OH)for CDT by Fenton-like reaction.The multifunctional nanoplatform MPBC has high biological safety and good anticancer effect,which displays the great latent capacity in biological application.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3804500)the National Natural Science Foundation of China(NSFC,Nos.51929201 and 52102354)the projects for Science and Technology Development Plan of Jilin province(Nos.20210402046GH and 20220508089RC)。
文摘The cancer cells realize their proliferation and metastasis activities based on the special redox adaptation to increased reactive oxygen species(ROS)level,which inversely makes them sensitive to external interference with their redox state.In view of this,in recent decades,researchers have made great efforts to construct a series of novel nanoplatform-based ROS-mediated cancer therapies through increasing ROS generation and inhibiting the ROS elimination.Besides,the multidrug resistance and thermoresistance of tumor are closely related to tumor redox state.Recently,numerous works have shown that ROS regulation in cancer cells can intervene in the expression,function and stability of related proteins to achieve reversal of tumor resistance.In this review,the recent researches about ROS-regulating nanoagents on cancer therapy and tumor resistance alleviation have been well summarized.Finally,the challenges and research directions of ROS-regulating nanoagents for future clinical translation are also discussed.
基金This work was funded by the National Basic Research Program of China(2010CB126601)the National Natural Science Foundation of China(31261140363 and 31171230)+2 种基金the China Agriculture Research System(CARS-12)the National International Science and Technology Cooperation Plan(2011DFB31690)the National High Technology Research and Development Program of China(2012AA101204-2).
文摘Cassava,a tropical food,feed and biofuel crop,has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition,which makes it highly suitable as a model plant for tropical crops.However,the understanding of the metabolism and genomics of this important crop is limited.The recent breakthroughs in the genomics of cassava,including whole-genome sequencing and transcriptome analysis,as well as advances in the biology of photosynthesis,starch biosynthesis,adaptation to drought and high temperature,and resistance to virus and bacterial diseases,are reviewed here.Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars.Finally,the current challenges and future potential of cassava as a model plant are discussed.