期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Limit load and failure mechanisms of a vertical Hoek-Brown rock slope
1
作者 Jim Shiau Warayut Dokduea +1 位作者 Suraparb Keawsawasvong pitthaya jamsawang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1106-1111,共6页
The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determin... The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found. 展开更多
关键词 Bearing capacity Rock slope Vertical slope Finite element limit analysis Hoek-Brown yield criterion
下载PDF
Reliability assessment for serviceability limit states of stiffened deep cement mixing column-supported embankments
2
作者 Chana Phutthananon Pornkasem Jongpradist +3 位作者 Kangwan Kandavorawong Daniel Dias Xiangfeng Guo pitthaya jamsawang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2402-2422,共21页
The reliability and deterministic analyses of wood-cored stiffened deep cement mixing and deep cement mixing column-supported embankments(referred to as WSCSE and DCSE,respectively)considering serviceability limit sta... The reliability and deterministic analyses of wood-cored stiffened deep cement mixing and deep cement mixing column-supported embankments(referred to as WSCSE and DCSE,respectively)considering serviceability limit state requirements are presented in this paper.Random field theory was used to simulate the spatial variability of soilcement mixing(SCM)material in which the adaptive Kriging Monte Carlo simulation was adopted to estimate the failure probability of a columnsupported embankment(CSE)system.A new method for stochastically generating random values of unconfined compressive strength(qu)and the ratio(Ru)between the undrained elastic modulus and qu of SCM material based on statistical correlation data is proposed.Reliability performance of CSEs concerning changes in the mean(μ),coefficient of variation(CoV),and vertical spatial correlation length(θv)of qu and Ru are presented and discussed.The obtained results indicate that WSCSE can provide a significantly higher reliability level and can tolerate more SCM material spatial variability than DCSE.Some performance of DCSE and WSCSE,which can be considered satisfactory in a deterministic framework,cannot guarantee an acceptable reliability level from a probabilistic viewpoint.This highlights the importance and necessity of employing reliability analyses for the design of CSEs.Moreover,consideration of only μ and CoV of qu seems to be sufficient for reliability analysis of WSCSE while for DCSE,uncertainties regarding the Ru(i.e.both μ and CoV)and θv of qu cannot be ignored. 展开更多
关键词 Reliability analysis Column-supported embankment(CSE) Stiffened deep cement mixing column SERVICEABILITY Adaptive kriging Monte Carlo simulation
下载PDF
Improved prediction of pile bending moment and deflection due to adjacent braced excavation
3
作者 Chana PHUTTHANANON Pornkasem JONGPRADIST +2 位作者 Duangkamol SIRIRAK Prateep LUEPRASERT pitthaya jamsawang 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第11期1739-1759,共21页
Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases.Proper assessment is crucial in the initial design stages.This study develops equations to pre... Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases.Proper assessment is crucial in the initial design stages.This study develops equations to predict the existing pile bending moment and deflection produced by adjacent braced excavations.Influential parameters(i.e.,the excavation geometry,diaphragm wall thickness,pile geometry,strength and small-strain stiffness of the soil,and soft clay thickness)were considered and employed in the developed equations.It is practically unfeasible to obtain measurement data;hence,artificial data for the bending moment and deflection of existing piles were produced from well-calibrated numerical analyses of hypothetical cases,using the three-dimensional finite element method.The developed equations were established through a multiple linear regression analysis of the artificial data,using the transformation technique.In addition,the three-dimensional nature of the excavation work was characterized by considering the excavation corner effect,using the plane strain ratio parameter.The estimation results of the developed equations can provide satisfactory pile bending moment and deflection data and are more accurate than those found in previous studies. 展开更多
关键词 pile responses EXCAVATION PREDICTION DEFLECTION bending moments
原文传递
Numerical investigation on the responses of existing single piles due to adjacent twin tunneling considering the lagging distance
4
作者 Chana Phutthananon Somkiat Lertkultanon +3 位作者 Pornkasem Jongpradist Ochok Duangsano Suched Likitlersuang pitthaya jamsawang 《Underground Space》 SCIE EI CSCD 2023年第4期171-188,共18页
This paper presents an assessment of the influence of the lagging distance between two horizontal tunnel faces of the side-by-side twin tunnels on the responses of the adjacent existing single pile by a series of thre... This paper presents an assessment of the influence of the lagging distance between two horizontal tunnel faces of the side-by-side twin tunnels on the responses of the adjacent existing single pile by a series of three-dimensional numerical analyses.Two different relative positions between the pile tip and the tunnel are considered to cover the short and long pile behaviors.The responses of the existing pile in terms of pile head settlement,axial force,lateral movement and bending moment are considered and discussed.The numerical results indicate that the lagging distance between twin tunnel faces significantly affects not only the soil movements but also the responses of the existing single pile.The critical case that produces unsatisfactory pile responses due to twin tunneling is when the lagging distance between the second tunnel and the preceding tunnel equals to the shield length.It is recommended that the lagging distance be not less than three times of shield length when the two tunnels need to be concurrently excavated. 展开更多
关键词 Twin tunnels Tunnel lagging distance Existing pile Finite element analysis Pile responses
原文传递
Reliability-based settlement analysis of embankments over soft soils reinforced with T-shaped deep cement mixing piles 被引量:1
5
作者 Chana PHUTTHANANON Pornkasem JONGPRADIST +3 位作者 Daniel DIAS Xiangfeng GUO pitthaya jamsawang Julien BAROTH 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第5期638-656,共19页
This paper presents a reliability-based settlement analysis of T-shaped deep cement mixing(TDM)pile-supported embankments over soft soils.The uncertainties of the mechanical properties of the in-situ soil,pile,and emb... This paper presents a reliability-based settlement analysis of T-shaped deep cement mixing(TDM)pile-supported embankments over soft soils.The uncertainties of the mechanical properties of the in-situ soil,pile,and embankment,and the effect of the pile shape are considered simultaneously.The analyses are performed using Monte Carlo Simulations in combination with an adaptive Kriging(using adaptive sampling algorithm).Individual and system failure probabilities,in terms of the differential and maximum settlements(serviceability limit state(SLS)requirements),are considered.The reliability results for the embankments supported by TDM piles,with various shapes,are compared and discussed together with the results for conventional deep cement mixing pile-supported embankments with equivalent pile volumes.The influences of the inherent variabilities in the material properties(mean and coefficient of variation values)on the reliability of the piled embankments,are also investigated.This study shows that large TDM piles,particularly those with a shape factor of greater than 3,can enhance the reliability of the embankment in terms of SLS requirements,and even avoid unacceptable reliability levels caused by variability in the material properties. 展开更多
关键词 T-shaped deep cement mixing piles piled embankments SETTLEMENT reliability analysis soil uncertainties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部