期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-objective differential evolution with diversity enhancement 被引量:2
1
作者 ponnuthurai-nagaratnam suganthan 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第7期538-543,共6页
Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. Howev... Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement. 展开更多
关键词 Multi-objective evolutionary algorithm (MOEA) Multi-objective differential evolution (MODE) Diversity enhancement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部