Various recent reports on Tuberculosis have alarmed an increase in the patient class and subsequent death rates across the globe. Over and above the spread of more dangerous and fatal forms of tuberculosis like MDR-TB...Various recent reports on Tuberculosis have alarmed an increase in the patient class and subsequent death rates across the globe. Over and above the spread of more dangerous and fatal forms of tuberculosis like MDR-TB i.e. multiple-drug resistance tuberculosis, XDR-TB i.e. extensively-drug resistance tuberculosis & TDR-TB i.e. total-drug resistance tuberculosis has forwarded an urgent need to discover novel antitubercular agents. The current work is aimed at combining two previously well-known pharmacophores (pyrazoline and benzoxazole nucleus) in order to design and synthesize a series of novel benzoxazole-based pyrazoline derivatives. The synthesized target compounds were structurally confirmed by LCMS, 1H-NMR and 13C-NMR analysis. The target compounds were In vitro evaluated against M. tuberculosis H37Rv strain, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) strains. The In vitro screening results depicted that majority of the target compounds displayed potent activity with MIC in a range of ~0.8 to 6.25 μg/mL. Many compounds were found to be more potent than isoniazid against MDR-TB with MIC value 3.12 μg/mL and XDR-TB with MIC value 12.5 μg/mL. Cytotoxicity assay of these active compounds on VERO cell lines also displayed good selectivity index.展开更多
A series of pyrazoline-based new heterocycles have recently been synthesized from our group where some of the compounds display potent anti-tubercular activity against Mycobacterium tuberculosis H37Rv. In order to fur...A series of pyrazoline-based new heterocycles have recently been synthesized from our group where some of the compounds display potent anti-tubercular activity against Mycobacterium tuberculosis H37Rv. In order to further explore the potency of the compounds, quantitative structure activity relationship study is carried out using genetic function approximation. Statistically significant (r2 = 0.85) and predictive (r2pred=0.89 and r2m=0.74)?QSAR models are developed. It is evident from the QSAR study that majority of the anti-tubercular activity is found to be driven by lipophilicity. Also, molecular solubility, Jurs and shadow descriptors influence the biological activity significantly. Also, positive contribution of molecular shadow descriptors suggests that molecules with bulkier substituents are more likely to enhance anti-tubercular activity. Since the developed QSAR models are found to be statistically significant and predictive, they potentially can be applied for predicting anti-tubercular activity of new molecules for prioritization of molecules for synthesis.展开更多
文摘Various recent reports on Tuberculosis have alarmed an increase in the patient class and subsequent death rates across the globe. Over and above the spread of more dangerous and fatal forms of tuberculosis like MDR-TB i.e. multiple-drug resistance tuberculosis, XDR-TB i.e. extensively-drug resistance tuberculosis & TDR-TB i.e. total-drug resistance tuberculosis has forwarded an urgent need to discover novel antitubercular agents. The current work is aimed at combining two previously well-known pharmacophores (pyrazoline and benzoxazole nucleus) in order to design and synthesize a series of novel benzoxazole-based pyrazoline derivatives. The synthesized target compounds were structurally confirmed by LCMS, 1H-NMR and 13C-NMR analysis. The target compounds were In vitro evaluated against M. tuberculosis H37Rv strain, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) strains. The In vitro screening results depicted that majority of the target compounds displayed potent activity with MIC in a range of ~0.8 to 6.25 μg/mL. Many compounds were found to be more potent than isoniazid against MDR-TB with MIC value 3.12 μg/mL and XDR-TB with MIC value 12.5 μg/mL. Cytotoxicity assay of these active compounds on VERO cell lines also displayed good selectivity index.
文摘A series of pyrazoline-based new heterocycles have recently been synthesized from our group where some of the compounds display potent anti-tubercular activity against Mycobacterium tuberculosis H37Rv. In order to further explore the potency of the compounds, quantitative structure activity relationship study is carried out using genetic function approximation. Statistically significant (r2 = 0.85) and predictive (r2pred=0.89 and r2m=0.74)?QSAR models are developed. It is evident from the QSAR study that majority of the anti-tubercular activity is found to be driven by lipophilicity. Also, molecular solubility, Jurs and shadow descriptors influence the biological activity significantly. Also, positive contribution of molecular shadow descriptors suggests that molecules with bulkier substituents are more likely to enhance anti-tubercular activity. Since the developed QSAR models are found to be statistically significant and predictive, they potentially can be applied for predicting anti-tubercular activity of new molecules for prioritization of molecules for synthesis.