Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a novel target in Plasmodium falciparum as it has least homology with the human host. Homology...Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a novel target in Plasmodium falciparum as it has least homology with the human host. Homology model of P. falciparum transketolase (PfTk) was constructed using the crystal structure of S. cervisiae transketolase as a template, and used for the identification and prioritization of potential compounds targeted against Plasmodium falciparum transketolase. The docking studies with fructose-6-phosphate and thiamine pyrophosphate showed that His31, Asp473, Ser388, Arg361 and His465 formed hydrogen bonds with fructose-6-phosphate while pyrimidine ring of coenzyme interacted with conserved residues of protein viz., Leu121, Glu415, Gly119. The major interacting residues involved in binding of oxythiamine pyrophosphate were similar to cofactor binding site of PfTk. An integrated pharmacophore, co-factor ThDP and substrate fructose-6-pho- sphate, based virtual screening of a small mo- lecule database retrieved eight and thirteen compounds respectively. When screened for their activity against P. falciparum transketolase, one compound in case of ThDP and three compounds in case of fructose-6-phosphate based screening were found active against PfTk. Identification of these novel and chemically diverse inhibitors provides initial leads for optimization of more potent and efficacious drug candidates to treat malarial infection.展开更多
文摘Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a novel target in Plasmodium falciparum as it has least homology with the human host. Homology model of P. falciparum transketolase (PfTk) was constructed using the crystal structure of S. cervisiae transketolase as a template, and used for the identification and prioritization of potential compounds targeted against Plasmodium falciparum transketolase. The docking studies with fructose-6-phosphate and thiamine pyrophosphate showed that His31, Asp473, Ser388, Arg361 and His465 formed hydrogen bonds with fructose-6-phosphate while pyrimidine ring of coenzyme interacted with conserved residues of protein viz., Leu121, Glu415, Gly119. The major interacting residues involved in binding of oxythiamine pyrophosphate were similar to cofactor binding site of PfTk. An integrated pharmacophore, co-factor ThDP and substrate fructose-6-pho- sphate, based virtual screening of a small mo- lecule database retrieved eight and thirteen compounds respectively. When screened for their activity against P. falciparum transketolase, one compound in case of ThDP and three compounds in case of fructose-6-phosphate based screening were found active against PfTk. Identification of these novel and chemically diverse inhibitors provides initial leads for optimization of more potent and efficacious drug candidates to treat malarial infection.