期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Synthesis and Ultrasonic Characterization of Cu/PVP Nanoparticles-Polymer Suspensions
1
作者 Giridhar Mishra Satyendra kumar Verma +2 位作者 Devraj Singh pramod kumar yadawa Raja Ram Yadav 《Open Journal of Acoustics》 2011年第1期9-14,共6页
A polymer colloidal solution having dispersed nanoparticles of Cu metal has been developed using a novel chemical method. Colloidal solutions of representative concentrations of 0.2 to 2.0 wt% Cu-nanoparticles con-ten... A polymer colloidal solution having dispersed nanoparticles of Cu metal has been developed using a novel chemical method. Colloidal solutions of representative concentrations of 0.2 to 2.0 wt% Cu-nanoparticles con-tents in the primary solutions were prepared to study the modified ultrasonic attenuation and ultrasonic velocity in polyvinyl alcohol (PVP) polymer molecules on incorporating the Cu-nanoparticles. The synthesized copper metal nanoparticles dispersed in the polymer solutions were characterized by UV-Visible absorption spectros-copy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The nanofluid sample showed a symmetrical peak at 592 nm due to the surface plasmon resonance of the copper nanoparticles. XRD results confirmed that copper nanoparticles were crystalline in the colloidal solution. The TEM micrograph revealed spherical copper nanoparticles having diameter in the range 10 - 40 nm. A characteristic behaviour of the ultra-sonic velocity and the attenuation are observed at the particular temperature/particle concentration. It reveals that the colloidal suspension occurs in divided groups in the small micelles. The results are discussed in correlation with the thermophysical properties predicting the enhanced thermal conductivity of the samples. 展开更多
关键词 Nanofluids COLLOIDS Thermal PROPERTIES Nanoparticles ULTRASONIC PROPERTIES
下载PDF
Acoustic Wave Propagation in Nanocrystalline RuCo Alloys
2
作者 pramod kumar yadawa Devraj Singh +2 位作者 Dharmendra kumar Pandey Giridhar Mishra RajaRam Yadav 《Advances in Materials Physics and Chemistry》 2011年第2期14-19,共6页
The ultrasonic properties like elastic constant, ultrasonic velocity in the hexagonal structured nanocrystalline RuCo alloys have been studied along unique axis at room temperature. The second and third order elastic ... The ultrasonic properties like elastic constant, ultrasonic velocity in the hexagonal structured nanocrystalline RuCo alloys have been studied along unique axis at room temperature. The second and third order elastic constants (SOEC & TOEC) have been calculated for these alloys using Lennard-Jones potential. The orientation dependent ultrasonic velocity has been also evaluated to study the anisotropic behaviour of these alloys. The velocities VL and VS1 have minima and maxima, respectively at 45° with unique axis of the crystal, while VS2 increases with the angle from unique axis. The inconsistent behaviour of angle-dependent velocities is associated to the action of second order elastic constants. Debye average ultrasonic velocities of these alloys are increasing with the angle and has maximum at 55° with unique axis at room temperature. Hence, when a ultrasonic wave travels at 55° with unique axis of these alloys, then the average ultrasonic velocity is found to be maximum. Elastic constants and density are mainly the affecting factor for anomalous behaviour of ultrasonic velocity in these alloys. The mechanical and ultrasonic properties of Co0.75Ru0.25 alloy will be better than the other compounds due to their high SOEC, ultrasonic velocity and low ultrasonic attenuation. Co0.75Ru0.25 alloy is more suitable for industrial and other uses, as it has the highest elastic constants and lowest ultrasonic attenuation in comparison to other of these alloys. The results of this investigation are discussed in correlation with other known thermophysical properties. 展开更多
关键词 ALLOYS ELASTIC PROPERTIES ULTRASONIC PROPERTIES
下载PDF
Theoretical investigation on mechanical,thermal,and ultrasonic properties of epitaxial nanostructured ZrN layers growth on MgO(001)substrate
3
作者 Aadesh kumar Prajapati Sachin Rai +1 位作者 Prashant Srivastav pramod kumar yadawa 《ChemPhysMater》 2023年第3期253-258,共6页
In the present study,we calculated the elastic,mechanical,and thermo-physical properties of Zirconium Nitride(ZrN)/Magnesium Oxide(MgO)(001)nanostructures in the temperature range of 50∼300 K using higher-order elast... In the present study,we calculated the elastic,mechanical,and thermo-physical properties of Zirconium Nitride(ZrN)/Magnesium Oxide(MgO)(001)nanostructures in the temperature range of 50∼300 K using higher-order elastic constants.With two fundamental factors,nearest-neighbor distance and hardness parameter,in this tem-perature range,the second-and third-order elastic constants(SOECs and TOECs)are estimated using the Coulomb&Born-Mayer potential.The computed values of SOECs have been used to calculate Young’s modulus,thermal conductivity,Zener anisotropy,bulk modulus,thermal energy density,shear modulus,and Poisson’s ratio to as-sess the thermal and mechanical properties of the ZrN/MgO(001)nanostructured layer.Additionally,SOECs are used to calculate the wave velocities for shear as well as longitudinal modes of propagation along crystalline orientations<100>,<110>,and<111>in these temperature ranges.The temperature-dependent Debye average velocity,hardness,melting temperature,and ultrasonic Grüneisen parameters(UGPs)were evaluated.The frac-ture/toughness(B/G)ratio in the current investigation was greater than 1.75,indicating that the ZrN/MgO(001)nanostructured layer was ductile in this temperature range.The selected materials fully satisfied the Born me-chanical stability requirement.At this ambient temperature,it has been computed how long thermal relaxation takes to complete and how ultrasonic waves are attenuated by thermo-elastic relaxation and phonon-phonon interaction mechanisms.These results,in combination with other well-known physical properties,can be applied to the non-destructive testing of materials for various industrial applications such as microelectronic devices,optical coatings,batteries,and solar cells. 展开更多
关键词 Nanostructured layers Elastic properties Thermal conductivity Mechanical properties Ultrasonic properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部