Utility scale wind turbines produce a significant amount of noise which has been identified as one of the most critical challenges to the widespread use of wind energy. Aerodynamic noise caused primarily by the intera...Utility scale wind turbines produce a significant amount of noise which has been identified as one of the most critical challenges to the widespread use of wind energy. Aerodynamic noise caused primarily by the interaction of the boundary layer and (or) the upstream atmospheric turbulence with the trailing edge of the blade has been identified as the most dominant source of noise in wind turbines. The authors here propose an active noise control system based on the FxLMS algorithm which can achieve suppression of noise from a modern wind turbine. Two types of noise sources have been simulated: monopole and dipole. The results of the active noise control algorithm are validated with simulations in MATLAB. The agreement between the results shows the far impact of active noise control techniques will have in future wind turbines.展开更多
文摘Utility scale wind turbines produce a significant amount of noise which has been identified as one of the most critical challenges to the widespread use of wind energy. Aerodynamic noise caused primarily by the interaction of the boundary layer and (or) the upstream atmospheric turbulence with the trailing edge of the blade has been identified as the most dominant source of noise in wind turbines. The authors here propose an active noise control system based on the FxLMS algorithm which can achieve suppression of noise from a modern wind turbine. Two types of noise sources have been simulated: monopole and dipole. The results of the active noise control algorithm are validated with simulations in MATLAB. The agreement between the results shows the far impact of active noise control techniques will have in future wind turbines.