Ammonium dinitramide [NH4 N(NO_2)2, ADN] is considered as a possible replacement for ammonium perchlorate(AP) in nearly all kind of solid rocket propulsions in the coming future. The reason to use ADN instead of AP in...Ammonium dinitramide [NH4 N(NO_2)2, ADN] is considered as a possible replacement for ammonium perchlorate(AP) in nearly all kind of solid rocket propulsions in the coming future. The reason to use ADN instead of AP in solid rocket propulsion is because of its harmless combustion products, along with its capacity to generate high specific impulse(Isp). ADN is fairly a new member in the solid oxidizer community and is considered under green energetic material(GEM). Application and feasible utilization of ADN as an oxidizer for composite solid propellants(CSP's) requires complete knowledge of its thermal decomposition processes along with its combustion behavior. A detailed overview on the physical and chemical properties, thermal decomposition, and combustion behavior of ADN and ADN based propellants has been discussed in this paper. Catalytic effect on thermal decomposition, combustion wave structure, and burning rate of ADN is also discussed.展开更多
文摘Ammonium dinitramide [NH4 N(NO_2)2, ADN] is considered as a possible replacement for ammonium perchlorate(AP) in nearly all kind of solid rocket propulsions in the coming future. The reason to use ADN instead of AP in solid rocket propulsion is because of its harmless combustion products, along with its capacity to generate high specific impulse(Isp). ADN is fairly a new member in the solid oxidizer community and is considered under green energetic material(GEM). Application and feasible utilization of ADN as an oxidizer for composite solid propellants(CSP's) requires complete knowledge of its thermal decomposition processes along with its combustion behavior. A detailed overview on the physical and chemical properties, thermal decomposition, and combustion behavior of ADN and ADN based propellants has been discussed in this paper. Catalytic effect on thermal decomposition, combustion wave structure, and burning rate of ADN is also discussed.