期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Hybrid Approach for COVID-19 Detection Using Biogeography-Based Optimization and Deep Learning
1
作者 K.Venkatachalam Siuly Siuly +3 位作者 M.Vinoth Kumar praveen lalwani Manas Kumar Mishra Enamul Kabir 《Computers, Materials & Continua》 SCIE EI 2022年第2期3717-3732,共16页
The COVID-19 pandemic has created a major challenge for countries all over the world and has placed tremendous pressure on their public health care services.An early diagnosis of COVID-19 may reduce the impact of the ... The COVID-19 pandemic has created a major challenge for countries all over the world and has placed tremendous pressure on their public health care services.An early diagnosis of COVID-19 may reduce the impact of the coronavirus.To achieve this objective,modern computation methods,such as deep learning,may be applied.In this study,a computational model involving deep learning and biogeography-based optimization(BBO)for early detection and management of COVID-19 is introduced.Specifically,BBO is used for the layer selection process in the proposed convolutional neural network(CNN).The computational model accepts images,such as CT scans,X-rays,positron emission tomography,lung ultrasound,and magnetic resonance imaging,as inputs.In the comparative analysis,the proposed deep learning model CNNis compared with other existingmodels,namely,VGG16,InceptionV3,ResNet50,and MobileNet.In the fitness function formation,classification accuracy is considered to enhance the prediction capability of the proposed model.Experimental results demonstrate that the proposed model outperforms InceptionV3 and ResNet50. 展开更多
关键词 Covid-19 biogeography-based optimization deep learning convolutional neural network computer vision
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部