In the present work silver nanoparticles (AgNPs) were synthesized extracellularly by bacteria Bacillus cereus collected from the riverine belt of Gangetic Plain of India. The microbes were isolated, screened and chara...In the present work silver nanoparticles (AgNPs) were synthesized extracellularly by bacteria Bacillus cereus collected from the riverine belt of Gangetic Plain of India. The microbes were isolated, screened and characterized by morphological and biochemical analyses. The silver resistant strain was exposed to different concentrations of silver salt (AgNO3). UV-visible spectrum of the supernatant of cell culture showed absorbance peak of AgNPs at ~ 435nm.The shape and size of AgNPs were ascertained by High Resolution Transmission Electron Micrography (HRTEM), X-ray diffraction (XRD) and Energy Dispersive spectroscopy (EDS). Average size of the synthesized AgNPs was found to be in the range of 10-30 nm with spherical shape. AgNPs were tested against antibacterial potential of some common human pathogens.展开更多
文摘In the present work silver nanoparticles (AgNPs) were synthesized extracellularly by bacteria Bacillus cereus collected from the riverine belt of Gangetic Plain of India. The microbes were isolated, screened and characterized by morphological and biochemical analyses. The silver resistant strain was exposed to different concentrations of silver salt (AgNO3). UV-visible spectrum of the supernatant of cell culture showed absorbance peak of AgNPs at ~ 435nm.The shape and size of AgNPs were ascertained by High Resolution Transmission Electron Micrography (HRTEM), X-ray diffraction (XRD) and Energy Dispersive spectroscopy (EDS). Average size of the synthesized AgNPs was found to be in the range of 10-30 nm with spherical shape. AgNPs were tested against antibacterial potential of some common human pathogens.