期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
From Gradient Elasticity to Gradient Interatomic Potentials: The Case-Study of Gradient London Potential
1
作者 Kostas Parisis Fei Shuang +3 位作者 Bo Wang pu hu Andreas Giannakoudakis Avraam Konstantinidis 《Journal of Applied Mathematics and Physics》 2020年第9期1826-1837,共12页
Motivated by the special theory of gradient elasticity (GradEla), a proposal is advanced for extending it to construct gradient models for interatomic potentials, commonly used in atomistic simulations. Our focus is o... Motivated by the special theory of gradient elasticity (GradEla), a proposal is advanced for extending it to construct gradient models for interatomic potentials, commonly used in atomistic simulations. Our focus is on London’s quantum mechanical potential which is an analytical expression valid until a certain characteristic distance where “attractive” molecular interactions change character and become “repulsive” and cannot be described by the classical form of London’s potential. It turns out that the suggested internal length gradient (ILG) generalization of London’s potential generates both an “attractive” and a “repulsive” branch, and by adjusting the corresponding gradient parameters, the behavior of the empirical Lennard-Jones potentials is theoretically captured. 展开更多
关键词 Gradient Elasticity London’s Potential Gradient Interatomic Potentials
下载PDF
An insight into failure mechanism of NASICON-structured Na3V2(PO4)3 in hybrid aqueous rechargeable battery 被引量:3
2
作者 Xinxin Zhang Jun Ma +6 位作者 pu hu Bingbing Chen Chenglong Lu Xinhong Zhou Pengxian Han Lihua Chen Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期1-7,共7页
NASICON (Na-super-ionic-conductors)-structured materials have attracted extensive research interest due to their great application potential in secondary batteries. However, the mechanism of capacity fading for NASICO... NASICON (Na-super-ionic-conductors)-structured materials have attracted extensive research interest due to their great application potential in secondary batteries. However, the mechanism of capacity fading for NASICON-structured electrode materials has been rarely studied. In this paper, we synthesized the NASICON-structured Na3V2(PO4)3/C composite by simple sol-gel and high-temperature solid-phase method and investigated its electrochemical performance in Na-Zn hybrid aqueous rechargeable batteries. After characterizing the structure, morphology and composition variations as well as the interfacial resistance changes of Na3V2(PO4)3/C cathode during cycling, we propose a mechanical and interfacial degradation mechanism for capacity fading of NASICON-structured Na3V2(PO4)3/C in Na-Zn hybrid aqueous rechargeable batteries. This work will shed light on enhancing the mechanical and in terfacial stability of NASICON-structured Na3V2(PO4)3/C in Na-Zn hybrid aqueous rechargeable batteries. 展开更多
关键词 Mechanical degradation Na3V2(PO4)3 Zn metal ANODE HYBRID AQUEOUS battery Failure mechanism
下载PDF
Innate Preferences for Radial Gradient Pattern Cues in the Cotton Bollworm, <i>Helicoverpa armigera</i>
3
作者 Qianwen Luo pu hu +4 位作者 Hongfei Zhang Gaoping Wang Xianru Guo Guohui Yuan Weizheng Li 《Advances in Bioscience and Biotechnology》 2018年第10期534-548,共15页
Information is lacking regarding the visual cues used by Helicoverpa armigera moths during nectar feeding. Here, we investigated the preference for radial gradient patterns in H. armigera moths. The results indicated ... Information is lacking regarding the visual cues used by Helicoverpa armigera moths during nectar feeding. Here, we investigated the preference for radial gradient patterns in H. armigera moths. The results indicated that both sexes shared a preference to plain flower models of blue and cyan. The radial gradient pattern (cyan as nectar guide color and blue as petal color) was more attractive than its component plain colors (cyan or blue), especially in male moths. Number of corolla petals did not influence the attractiveness of the cyan-blue pattern. The addition of a tertiary floral attractant to white-blue or cyan-blue radial gradient patterns could dramatically enhance the attractiveness of visual cues in males rather than females, suggesting that males gave a higher weight in olfactory modality than females gave, while females gave a higher weight in vision modality than males gave. All together, we found an optimal combination of floral cues in H. armigera sexes as follows: A tertiary floral attractant (2 μL dose of phenylacetaldehyde, benzyl acetate, and salicylaldehyde mixed in 26:15:2) added to white-blue radial gradient flower model (3 cm in diameter). To our knowledge, this is the first time that rose curve and radial gradient tools were used to simulate floral pattern in the studies of flower-visiting insects. 展开更多
关键词 Helicoverpa ARMIGERA Flower-Visitation Pattern RADIAL Gradient NECTAR Guide
下载PDF
A flame-retardant binder with high polysulfide affinity for safe and stable lithium–sulfur batteries
4
作者 Guowei Yu Guofeng Ye +9 位作者 Cheng Wang Chenyang Wang Zhaoyun Wang pu hu Yu Li Xi-Xi Feng Shuang-Jie Tan Min Yan Sen Xin Zhitian Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第3期1028-1036,共9页
Lithium-sulfur(Li-S) batteries have shown promises for the next-generation, high-energy electrochemical storage, yet are hindered by rapid performance decay due to the polysulfide shuttle in the cathode and safety con... Lithium-sulfur(Li-S) batteries have shown promises for the next-generation, high-energy electrochemical storage, yet are hindered by rapid performance decay due to the polysulfide shuttle in the cathode and safety concerns about potential thermal runaway. To address the above challenges, herein, we show a flame-retardant cathode binder that simultaneously improves the electrochemical stability and safety of batteries. The combination of soft and hard segments in the polymer framework of binders allows high flexibility and mechanical strength for adapting to the drastic volume change during the Li(de)intercalation of the S cathode. The binder contains a large number of polar groups, which show the high affinity to polysulfides so that they help to anchor active S species at the cathode. These polar groups also help to regulate and facilitate the Li-ion transport, promoting the kinetics of polysulfide conversion reaction. The binder contains abundant phosphine oxide groups, which, in the case of battery's thermal runaway, decompose and release PO· radicals to quench the combustion reactions and stop the fire. Consequently, Li-S batteries using the new cathode binder show the improved electrochemical performance, including a low-capacity decay of 0.046% per cycle for 800 cycles at 1 C and favorable rate capabilities of up to 3 C. This work offers new insights on the practical realization of high-energy rechargeable batteries with stable storage electrochemistry and high safety. 展开更多
关键词 lithium–sulfur battery polymer binder polysulfide affinity flame retardancy
原文传递
Highly efficient synthesis of boron nitride nanotubes by catalytic chemical vapor deposition of boron/nickel containing precursors
5
作者 Heng Wang Haoran Yang +5 位作者 Yongzhi Peng Yulin Zheng Dongying huang pu hu Yawei Li Zhengyi Fu 《Journal of Materiomics》 SCIE 2022年第6期1199-1204,共6页
High-purity and high-yield boron nitride nanotubes with large aspect ratio were prepared by a facile two-step process,including the synthesis of boron/nickel containing precursors by precipitation reactions and subseq... High-purity and high-yield boron nitride nanotubes with large aspect ratio were prepared by a facile two-step process,including the synthesis of boron/nickel containing precursors by precipitation reactions and subsequent thermally catalytic chemical vapor deposition reactions.The influence of catalyst content and annealing temperature on the phase composition and microstructure of the products were investigated.The results show that it is difficult to exert the catalytic effect of nickel-based catalyst at low temperatures(<1400℃).At appropriate temperatures(1400-1500℃),highly crystalline boron nitride nanotubes with a length of more than 50 mm and a diameter of 50 nm are formed.The content of catalyst in the precursor mainly affects the morphology of the boron nitride product.If the content is too low,it is easy to form boron nitride particles;while high catalyst content can easily lead to catalyst aggregation and form a submicron one-dimensional boron nitride with unregular structure.Based on microstructural evolutions,phase changes,and thermodynamic analysis,the vapor-liquid-solid(V-L-S)growth mechanism of the tip growth mode dominates the formation of boron nitride nanotubes has also been verified. 展开更多
关键词 Boron nitride nanotubes Highly efficient synthesis Boron/nickel containing precursors Growth mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部