The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet.I...The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet.In addition to this,the impacts of thermal radiation and viscous dissipation are taken into account.With the use of various computing strategies,numerical results have been produced.Similarity transformation was utilized in order to convert the partial differential equations(PDEs)that regulated energy,rotational momentum,concentration,and momentum into ordinary differential equations(ODEs).As compared to earlier published research,MATLAB inbuilt solver solution shows an extremely good correlation in exceptional instances.In exceptional instances,the present MATLAB inbuilt solver solution has a very excellent connection with the findings of the previously published investigations.A variety of flow field factors impact the Nusselt number,the wall couple shear stress,the friction factor,Sherwood numbers the dimensionless distributions discussed in detail.When the Eckert number rises,the temperature rises,and the Schmidt number falls,the concentration falls.Velocity increases with increases in the material factor but drops with increases in the magnetic parameter and the surface condition factor.展开更多
文摘The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet.In addition to this,the impacts of thermal radiation and viscous dissipation are taken into account.With the use of various computing strategies,numerical results have been produced.Similarity transformation was utilized in order to convert the partial differential equations(PDEs)that regulated energy,rotational momentum,concentration,and momentum into ordinary differential equations(ODEs).As compared to earlier published research,MATLAB inbuilt solver solution shows an extremely good correlation in exceptional instances.In exceptional instances,the present MATLAB inbuilt solver solution has a very excellent connection with the findings of the previously published investigations.A variety of flow field factors impact the Nusselt number,the wall couple shear stress,the friction factor,Sherwood numbers the dimensionless distributions discussed in detail.When the Eckert number rises,the temperature rises,and the Schmidt number falls,the concentration falls.Velocity increases with increases in the material factor but drops with increases in the magnetic parameter and the surface condition factor.