Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat...Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased in high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea mays at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in P, during heat stress were mostly due to non-stomatal effects. Photosystem Ⅱ (PSⅡ) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSⅡ electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.展开更多
Our understanding of the effects of elevated atmospheric CO2, singly and in combination with other environmental changes, on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller tha...Our understanding of the effects of elevated atmospheric CO2, singly and in combination with other environmental changes, on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil microbial communities associated with a dominant C4 prairie grass, Andropogon gerardii Vitman. Elevated CO2 and drought both affected resources available to the soil microbial community. For example, elevated CO2 increased the soil C:N ratio and water content during drought, whereas drought alone decreased both. Drought significantly decreased soil microbial biomass. In contrast, elevated CO2 increased biomass while ameliorating biomass decreases that were induced under drought. Total and active direct bacterial counts and carbon substrate use (overall use and number of used sources) increased significantly under elevated CO2. Denaturing gradient gel electrophoresis analysis revealed that drought and elevated CO2, singly and combined, did not affect the soil bacteria community structure. We conclude that elevated CO2 alone increased bacterial abundance and microbial activity and carbon use, probably in response to increased root exudation. Elevated CO2 also limited drought-related impacts on microbial activity and biomass, which likely resulted from decreased plant water use under elevated CO2. These are among the first results showing that elevated CO2 and drought work in opposition to modulate plant-associated soil-bacteria responses, which should then influence soil resources and plant and ecosystem function.展开更多
Humans are increasing atmospheric CO2, ground-level ozone (O3), and mean and acute high temperatures. Laboratory studies show that elevated CO2 can increase thermotolerance of photosynthesis in C3 plants. O3-related...Humans are increasing atmospheric CO2, ground-level ozone (O3), and mean and acute high temperatures. Laboratory studies show that elevated CO2 can increase thermotolerance of photosynthesis in C3 plants. O3-related oxidative stress may offset benefits of elevated CO2 during heat-waves. We determined effects of elevated CO2 and O3 on leaf thermotolerance of field-grown Glycine max (soybean, C3). Photosynthetic electron transport (Фet) was measured in attached leaves heated in situ and detached leaves heated under ambient CO2 and O3. Heating decreased Фet, which O3 exacerbated. Elevated CO2 prevented O3-related decreases during heating, but only increased Фet under ambient O3 in the field. Heating decreased chlorophyll and carotenoids, especially under elevated CO2. Neither CO2 nor O3 affected heat-shock proteins. Heating increased catalase (except in high O3) and Cu/Zn-superoxide dismutase (SOD), but not Mn- SOD; CO2 and O3 decreased catalase but neither SOD. Soluble carbohydrates were unaffected by heating, but increased in elevated CO2. Thus, protection of photosynthesis during heat stress by elevated CO2 occurs in field-grown soybean under ambient O3, as in the lab, and high CO2 limits heat damage under elevated O3, but this protection is likely from decreased photorespiration and stomatal conductance rather than production of heat-stress adaptations.展开更多
基金Supported by collaborative grants from the National Science Foundation toSAH and EWH.
文摘Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased in high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea mays at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in P, during heat stress were mostly due to non-stomatal effects. Photosystem Ⅱ (PSⅡ) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSⅡ electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.
基金Supported by the University of Toledo Department of Environmental Sciencesgrants from the National Science Foundation to S. Heckathorn and E.W.Hamilton.
文摘Our understanding of the effects of elevated atmospheric CO2, singly and in combination with other environmental changes, on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil microbial communities associated with a dominant C4 prairie grass, Andropogon gerardii Vitman. Elevated CO2 and drought both affected resources available to the soil microbial community. For example, elevated CO2 increased the soil C:N ratio and water content during drought, whereas drought alone decreased both. Drought significantly decreased soil microbial biomass. In contrast, elevated CO2 increased biomass while ameliorating biomass decreases that were induced under drought. Total and active direct bacterial counts and carbon substrate use (overall use and number of used sources) increased significantly under elevated CO2. Denaturing gradient gel electrophoresis analysis revealed that drought and elevated CO2, singly and combined, did not affect the soil bacteria community structure. We conclude that elevated CO2 alone increased bacterial abundance and microbial activity and carbon use, probably in response to increased root exudation. Elevated CO2 also limited drought-related impacts on microbial activity and biomass, which likely resulted from decreased plant water use under elevated CO2. These are among the first results showing that elevated CO2 and drought work in opposition to modulate plant-associated soil-bacteria responses, which should then influence soil resources and plant and ecosystem function.
基金Supported by grants from NSF (to SAH and EWH)USDA (to SAH).
文摘Humans are increasing atmospheric CO2, ground-level ozone (O3), and mean and acute high temperatures. Laboratory studies show that elevated CO2 can increase thermotolerance of photosynthesis in C3 plants. O3-related oxidative stress may offset benefits of elevated CO2 during heat-waves. We determined effects of elevated CO2 and O3 on leaf thermotolerance of field-grown Glycine max (soybean, C3). Photosynthetic electron transport (Фet) was measured in attached leaves heated in situ and detached leaves heated under ambient CO2 and O3. Heating decreased Фet, which O3 exacerbated. Elevated CO2 prevented O3-related decreases during heating, but only increased Фet under ambient O3 in the field. Heating decreased chlorophyll and carotenoids, especially under elevated CO2. Neither CO2 nor O3 affected heat-shock proteins. Heating increased catalase (except in high O3) and Cu/Zn-superoxide dismutase (SOD), but not Mn- SOD; CO2 and O3 decreased catalase but neither SOD. Soluble carbohydrates were unaffected by heating, but increased in elevated CO2. Thus, protection of photosynthesis during heat stress by elevated CO2 occurs in field-grown soybean under ambient O3, as in the lab, and high CO2 limits heat damage under elevated O3, but this protection is likely from decreased photorespiration and stomatal conductance rather than production of heat-stress adaptations.