The CO_2 adsorption on CaO(001) surface at different coverages from 1/9 monolayer(ML) to 1 ML has been investigated using density functional theory calculations. With the analysis of the most stable adsorption structu...The CO_2 adsorption on CaO(001) surface at different coverages from 1/9 monolayer(ML) to 1 ML has been investigated using density functional theory calculations. With the analysis of the most stable adsorption structures at different coverages, the mechanism of CaO(001)surface carbonating into CaCO_3 has been explored. At low coverages(≤1/3 ML), CO_2 molecule prefers sitting in parallel pattern on the CaO(001) surface, while the structure of the CaO(001)surface remains unchanged. At medium coverage(4/9 ~ 2/3 ML), the repulsive interactions between oxygen atoms of CO_2 become stronger, and the calcium carbonation structure appears on the CaO(001) surface. At high coverage( ≥ 7/9 ML), the structure of the CaO(001) surface is deeply damaged, and a few CO_2 molecules have penetrated into the surface and bound to the O atom of the second layer(sub-surface), eventually forming the layered structure of CaCO_3.Additionally, herein has discussed the simulation of HREELS and thermodynamical stability of these structures at different coverages.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21773030,21371034,21503042 and 51574090)Natural Science Foundation Fund of Fujian Province(No.2017J01409)the Education Department of Fujian Province(No.JAT160655)
文摘The CO_2 adsorption on CaO(001) surface at different coverages from 1/9 monolayer(ML) to 1 ML has been investigated using density functional theory calculations. With the analysis of the most stable adsorption structures at different coverages, the mechanism of CaO(001)surface carbonating into CaCO_3 has been explored. At low coverages(≤1/3 ML), CO_2 molecule prefers sitting in parallel pattern on the CaO(001) surface, while the structure of the CaO(001)surface remains unchanged. At medium coverage(4/9 ~ 2/3 ML), the repulsive interactions between oxygen atoms of CO_2 become stronger, and the calcium carbonation structure appears on the CaO(001) surface. At high coverage( ≥ 7/9 ML), the structure of the CaO(001) surface is deeply damaged, and a few CO_2 molecules have penetrated into the surface and bound to the O atom of the second layer(sub-surface), eventually forming the layered structure of CaCO_3.Additionally, herein has discussed the simulation of HREELS and thermodynamical stability of these structures at different coverages.