The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we ...The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea(Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis(PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by p H on the Changbai Mountains, besides p H, other soil features such as NO3–-N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.展开更多
基金Supported by the National Natural Science Foundation of China (61271126,21201060)the Program for Science and Technology Project of Heilongjiang Province (WB10A204,WB12A101,GZ11A103)。
基金Wildlife Conservation and Management of National Forestry Bureau of China
文摘The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea(Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis(PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by p H on the Changbai Mountains, besides p H, other soil features such as NO3–-N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.