Virus isolate Y1 was obtained from tobacco showing curly shoot symptoms in Baoshan, Yunnan Province. Whitefly transmission test and virion morphology observa-tion showed that it is a begomovirus. In reactions with 14 ...Virus isolate Y1 was obtained from tobacco showing curly shoot symptoms in Baoshan, Yunnan Province. Whitefly transmission test and virion morphology observa-tion showed that it is a begomovirus. In reactions with 14 monoclonal antibodies raised against begomoviruses, Y1 was readily differentiated from begomoviruses reported in China, Pakistan and India. The complete nucleotide sequence of DNA-A was determined, it contains 2746 nucleotides, with two ORFs in virion-sense DNA and four ORFs in comple-mentary-sense DNA. Comparisons with total DNA-A, inter-genie region and deduced amino acid sequences of individual ORFs showed that Y1 is a distinct Begomovirus species, for which the name Tobacco curly shoot virus (TCSV) is pro-posed. The total DNA-A of TCSV is most closely related to that of Tomato leaf curl virus from India (85% sequence identity). In contrast, the deduced coat protein of TCSV is most like that of Cotton leaf curl virus 72b isolate from Paki-stan (98% amino acid sequence identity).展开更多
microRNAs(miRNAs)have emerged as key components in the eukaryotic gene regulatory network.We and others have previously identified many miRNAs in a unicellular green alga,Chlamydomonas reinhardtii.To investigate wheth...microRNAs(miRNAs)have emerged as key components in the eukaryotic gene regulatory network.We and others have previously identified many miRNAs in a unicellular green alga,Chlamydomonas reinhardtii.To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage,we examined small RNAs in Volvox carteri,a multicellular species in the same family with Chlamydomonas reinhardtii.We identified 174 miRNAs in Volvox,with many of them being highly enriched in gonidia or somatic cells.The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo,suggesting that miRNAs play regulatory roles in the biology of green algae.Our catalog of miRNAs and their targets provides a resource for further studies on the evolution,biological functions,and genomic properties of miRNAs in green algae.展开更多
DNA double-strand break (DSB) is the most deleterious form of DNA damage and poses great threat to genome stability. Eu- karyotes have evolved complex mechanisms to repair DSBs through coordinated actions of protein...DNA double-strand break (DSB) is the most deleterious form of DNA damage and poses great threat to genome stability. Eu- karyotes have evolved complex mechanisms to repair DSBs through coordinated actions of protein sensors, transducers, and effectors. DSB-induced small RNAs (diRNAs) or Dicer/Drosha-dependent RNAs (DDRNAs) have been recently discovered in plants and vertebrates, adding an unsuspected RNA component into the DSB repair pathway. DiRNAs/DDRNAs control DNA damage response (DDR) activation by affecting DDR loci formation and cell cycle checkpoint enforcement and are required for efficient DSB repair. Here, we summarize the findings of diRNAs/DDRNAs and discuss the possible mechanisms through which they act to facilitate DSB repair.展开更多
基金This work was partially supported by the National Science Fund for Distinguished Young Scholars (Grant No. 30125032) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE The work was also sup
文摘Virus isolate Y1 was obtained from tobacco showing curly shoot symptoms in Baoshan, Yunnan Province. Whitefly transmission test and virion morphology observa-tion showed that it is a begomovirus. In reactions with 14 monoclonal antibodies raised against begomoviruses, Y1 was readily differentiated from begomoviruses reported in China, Pakistan and India. The complete nucleotide sequence of DNA-A was determined, it contains 2746 nucleotides, with two ORFs in virion-sense DNA and four ORFs in comple-mentary-sense DNA. Comparisons with total DNA-A, inter-genie region and deduced amino acid sequences of individual ORFs showed that Y1 is a distinct Begomovirus species, for which the name Tobacco curly shoot virus (TCSV) is pro-posed. The total DNA-A of TCSV is most closely related to that of Tomato leaf curl virus from India (85% sequence identity). In contrast, the deduced coat protein of TCSV is most like that of Cotton leaf curl virus 72b isolate from Paki-stan (98% amino acid sequence identity).
基金supported by the National Natural Science Foundation of China(31225015)National Basic Research Program of China(2012CB910900)to Qi YiJun
文摘microRNAs(miRNAs)have emerged as key components in the eukaryotic gene regulatory network.We and others have previously identified many miRNAs in a unicellular green alga,Chlamydomonas reinhardtii.To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage,we examined small RNAs in Volvox carteri,a multicellular species in the same family with Chlamydomonas reinhardtii.We identified 174 miRNAs in Volvox,with many of them being highly enriched in gonidia or somatic cells.The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo,suggesting that miRNAs play regulatory roles in the biology of green algae.Our catalog of miRNAs and their targets provides a resource for further studies on the evolution,biological functions,and genomic properties of miRNAs in green algae.
基金supported in part by China National Funds for Distinguished Young Scientists(31225015)National Key Scientific Research Program of China(2012CB910900)to Qi YiJun
文摘DNA double-strand break (DSB) is the most deleterious form of DNA damage and poses great threat to genome stability. Eu- karyotes have evolved complex mechanisms to repair DSBs through coordinated actions of protein sensors, transducers, and effectors. DSB-induced small RNAs (diRNAs) or Dicer/Drosha-dependent RNAs (DDRNAs) have been recently discovered in plants and vertebrates, adding an unsuspected RNA component into the DSB repair pathway. DiRNAs/DDRNAs control DNA damage response (DDR) activation by affecting DDR loci formation and cell cycle checkpoint enforcement and are required for efficient DSB repair. Here, we summarize the findings of diRNAs/DDRNAs and discuss the possible mechanisms through which they act to facilitate DSB repair.