Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quan...Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quantify the spatial variability of soil properties in different ecosystems. However, concerns still remain on how to characterize the effect of different sampling intensities on plant species richness within a given region. This study characterized the spatial variability of plant species richness and the species distribution pattern in a 25-hm2 sand dune plot in northeastern Inner Mongolia, China by using an intense sampling method(n=10,000). We also evaluated the overall effect of information loss associated with the spatial variability and distribution patterns of species richness under various scenarios of sampling intensities(n=10,000 to 289). Our results showed that semi-variograms of species richness were best described by the spherical and exponential models. As indicated by the nugget/sill ratio, species richness was different in terms of the strength of the spatial relationship. The different spatial metrics of species richness with increasing sampling intensities can represent different responses of the spatial patterns when compared with the reference set(n=10,000). This study indicated that an appropriate sampling intensity should be taken into account in field samplings for evaluating species biodiversity properly. A sampling intensity of n>2,500 for species richness yielded satisfactory results to resemble the spatial pattern of the above-quantified reference set(n=10,000) in this sand dune region of China.展开更多
By presenting the phase properties of bistability in amplitude-modulation atomic force microscopy, we put forward a technique, the constant-phase mode, which may eliminate bistability. Using this approach, we keep the...By presenting the phase properties of bistability in amplitude-modulation atomic force microscopy, we put forward a technique, the constant-phase mode, which may eliminate bistability. Using this approach, we keep the phase shift between driving and oscillation constant, slightly above -90°. In addition to the adjustment of the free amplitude, we add to amplitude-modulation atomic force microscopy another feedback so that the tip always oscillates in the high-amplitude state. A numerical simulation is carried out to demonstrate that the algorithm prevents bistability effectively.展开更多
基金funded by the National Basic Research Program of China (2013CB429903)
文摘Species richness is an important indicator of species diversity. Different sampling intensities will very likely produce different species richness values. Substantial efforts have already been made to explicitly quantify the spatial variability of soil properties in different ecosystems. However, concerns still remain on how to characterize the effect of different sampling intensities on plant species richness within a given region. This study characterized the spatial variability of plant species richness and the species distribution pattern in a 25-hm2 sand dune plot in northeastern Inner Mongolia, China by using an intense sampling method(n=10,000). We also evaluated the overall effect of information loss associated with the spatial variability and distribution patterns of species richness under various scenarios of sampling intensities(n=10,000 to 289). Our results showed that semi-variograms of species richness were best described by the spherical and exponential models. As indicated by the nugget/sill ratio, species richness was different in terms of the strength of the spatial relationship. The different spatial metrics of species richness with increasing sampling intensities can represent different responses of the spatial patterns when compared with the reference set(n=10,000). This study indicated that an appropriate sampling intensity should be taken into account in field samplings for evaluating species biodiversity properly. A sampling intensity of n>2,500 for species richness yielded satisfactory results to resemble the spatial pattern of the above-quantified reference set(n=10,000) in this sand dune region of China.
基金supported by the National Natural Science Foundation of China (11074019)the National High-Tech Research and Development Program of China (2007AA12Z128)
文摘By presenting the phase properties of bistability in amplitude-modulation atomic force microscopy, we put forward a technique, the constant-phase mode, which may eliminate bistability. Using this approach, we keep the phase shift between driving and oscillation constant, slightly above -90°. In addition to the adjustment of the free amplitude, we add to amplitude-modulation atomic force microscopy another feedback so that the tip always oscillates in the high-amplitude state. A numerical simulation is carried out to demonstrate that the algorithm prevents bistability effectively.