Lanthanide-doped upconversion nanoparticles(UCNPs) are great promising to apply to biomedical imaging and therapy. We prepared NaYF4:yb3+,Er3+ nanoparticles with different surface ligands, i.e., without any liga...Lanthanide-doped upconversion nanoparticles(UCNPs) are great promising to apply to biomedical imaging and therapy. We prepared NaYF4:yb3+,Er3+ nanoparticles with different surface ligands, i.e., without any ligands(bare), coordinated with 2-aminoethyl dihydrogen phosphate(AEP), polyacrylic acid(PAA) or polyallylamine (PAAm), via a simple two-step ligand exchange of oleic acid capped NaYF4:Yba+,Er3+ nanoparticles. Although the surface modification retained the crystal structure and transimission electron microscope(TEM) size distribution of the nanoparticles, and good dispersibility in aqueous solution and did not significantly change the upconversion luminescence, distinct differences were observed in the surface charge and hydrodynamic diameter. The cellular uptake and cytotoxicity of the nanoparticles were studied on two different cell lines, breast cancer MCF-7 and fibroblast 3T3. Confocal microscopy images demonstrate that PAAm-coordinated UCNPs can enhance the cellular uptake and endocytosis, whereas AEP- and PAA-coordinated UCNPs show a very low level of nonspecific adsorption Biocompatibility studies based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, however, indicate that PAAm-coordinated UCNPs are more toxic than the other two, and thus need further modifiaction(like PEG coordinating) to improve their biocompatibility. These results are important to the knowledge base required for the biomedical application of the UCNPs.展开更多
文摘Lanthanide-doped upconversion nanoparticles(UCNPs) are great promising to apply to biomedical imaging and therapy. We prepared NaYF4:yb3+,Er3+ nanoparticles with different surface ligands, i.e., without any ligands(bare), coordinated with 2-aminoethyl dihydrogen phosphate(AEP), polyacrylic acid(PAA) or polyallylamine (PAAm), via a simple two-step ligand exchange of oleic acid capped NaYF4:Yba+,Er3+ nanoparticles. Although the surface modification retained the crystal structure and transimission electron microscope(TEM) size distribution of the nanoparticles, and good dispersibility in aqueous solution and did not significantly change the upconversion luminescence, distinct differences were observed in the surface charge and hydrodynamic diameter. The cellular uptake and cytotoxicity of the nanoparticles were studied on two different cell lines, breast cancer MCF-7 and fibroblast 3T3. Confocal microscopy images demonstrate that PAAm-coordinated UCNPs can enhance the cellular uptake and endocytosis, whereas AEP- and PAA-coordinated UCNPs show a very low level of nonspecific adsorption Biocompatibility studies based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, however, indicate that PAAm-coordinated UCNPs are more toxic than the other two, and thus need further modifiaction(like PEG coordinating) to improve their biocompatibility. These results are important to the knowledge base required for the biomedical application of the UCNPs.