期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Identification and expression patterns of alcohol dehydrogenase genes involving in ester volatile biosynthesis in pear fruit 被引量:4
1
作者 qin gai-hua QI Xiao-xiao +4 位作者 QI Yong-jie GAO Zheng-hui YI Xing-kai PAN Hai-fa XU Yi-liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1742-1750,共9页
Alcohol dehydrogenase (ADH) catalyzes the interconversion of aldehydes and their corresponding alcohols, and is a key enzyme in volatile ester biosynthesis. However, little is known regarding ADH and ADH encoding ge... Alcohol dehydrogenase (ADH) catalyzes the interconversion of aldehydes and their corresponding alcohols, and is a key enzyme in volatile ester biosynthesis. However, little is known regarding ADH and ADH encoding genes (ADHs) in pear. We identified 8 ADHs in the pear's genome (PbrADHs) by multiple sequences alignment. The PbrADHs were highly ho- mologous in their coding regions, while were diversiform in structure. 9 introns were predicted in PbrADH3-PbrADH8, while 8 introns, generated through exon fusion and intron loss, were predicted in PbrADH1 and PbrADH2. To study the genetic regulation underlying aroma biogenesis in pear fruit, we determined the PbrADH transcripts, ADH activities and volatile contents of fruits during ripening stage for Nanguoli and Dangshansuli, two cultivars having different aroma characteristics. ADH activity was strongly associated with the transcription of ADH~ in the two cultivars during fruit ripening stage. The higher ester content paralleling to a higher ADH activity was detected in Nanguoli than in Dangshansuli, so it is induced that the lower ester content in Dangshansuli fruit may be the result of weak ADH activity. The present study revealed that total ADH activity and volatile ester production correlated with increased PbrADHstranscript levels. PbrADH6 may contribute to ADH activity catalyzing aldehyde reduction and ester formation in pear fruit. 展开更多
关键词 alcohol dehydrogenase ester volatile gene expression PEAR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部