An implicit higher ? order discontinuous Galerkin(DG) spatial discretization for the compressible Euler equations in a rotating frame of reference is presented and applied to a rotor in hover using hexahedral grids. I...An implicit higher ? order discontinuous Galerkin(DG) spatial discretization for the compressible Euler equations in a rotating frame of reference is presented and applied to a rotor in hover using hexahedral grids. Instead of auxiliary methods like grid adaptation,higher ? order simulations(fourth ? and fifth ? order accuracy) are adopted.Rigorous numerical experiments are carefully designed,conducted and analyzed. The results show generally excellent consistence with references and vigorously demonstrate the higher?order DG method's better performance in loading distribution computations and tip vortex capturing, with much fewer degrees of freedom(DoF). Detailed investigations on the outer boundary conditions for hovering rotors are presented as well. A simple but effective speed smooth procedure is developed specially for the DG method. Further results reveal that the rarely used pressure restriction for outlet speed has a considerable advantage over the extensively adopted vertical speed restriction.展开更多
A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice B...A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice Boltzmann flux solver(LBFS)is employed to evaluate the inviscid flux across the cell interfaces.The main advantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through introducing a function which varies from zero to one to control the artificial viscosity.Numerical results indicate that the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simulating both inviscid and viscous flows.展开更多
High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discont...High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin(DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts.展开更多
基金co-supported by the National High Technology Research and Development Program of China(No.2015AA015303)the National Natural Science Foundation of China(No.11272152)+1 种基金the Aeronautical Science Foundation of China(No.20152752033)the Open Project of Key Laboratory of Aerodynamic Noise Control
文摘An implicit higher ? order discontinuous Galerkin(DG) spatial discretization for the compressible Euler equations in a rotating frame of reference is presented and applied to a rotor in hover using hexahedral grids. Instead of auxiliary methods like grid adaptation,higher ? order simulations(fourth ? and fifth ? order accuracy) are adopted.Rigorous numerical experiments are carefully designed,conducted and analyzed. The results show generally excellent consistence with references and vigorously demonstrate the higher?order DG method's better performance in loading distribution computations and tip vortex capturing, with much fewer degrees of freedom(DoF). Detailed investigations on the outer boundary conditions for hovering rotors are presented as well. A simple but effective speed smooth procedure is developed specially for the DG method. Further results reveal that the rarely used pressure restriction for outlet speed has a considerable advantage over the extensively adopted vertical speed restriction.
文摘A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice Boltzmann flux solver(LBFS)is employed to evaluate the inviscid flux across the cell interfaces.The main advantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through introducing a function which varies from zero to one to control the artificial viscosity.Numerical results indicate that the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simulating both inviscid and viscous flows.
基金co-supported by the Aeronautical Science Foundation of China (No. 20152752033)the National Natural Science Foundation of China (No. 11272152)the Open Project of Key Laboratory of Aerodynamic Noise Control
文摘High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin(DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts.