Although much has been known about how humans psychologically perform data-driven scientific discovery,less has been known about its brain mechanism.The number series completion is a typical data-driven scientific dis...Although much has been known about how humans psychologically perform data-driven scientific discovery,less has been known about its brain mechanism.The number series completion is a typical data-driven scientific discovery task,and has been demonstrated to possess the priming effect,which is attributed to the regularity identification and its subsequent extrapolation.In order to reduce the heterogeneities and make the experimental task proper for a brain imaging study,the number magnitude and arithmetic operation involved in number series completion tasks are further restricted.Behavioral performance in Experiment 1 shows the reliable priming effect for targets as expected.Then,a factorial design (the priming effect:prime vs.target;the period length:simple vs.complex) of event-related functional magnetic resonance imaging (fMRI) is used in Experiment 2 to examine the neural basis of data-driven scientific discovery.The fMRI results reveal a double dissociation of the left DLPFC (dorsolateral prefrontal cortex) and the left APFC (anterior prefrontal cortex) between the simple (period length=1) and the complex (period length=2) number series completion task.The priming effect in the left DLPFC is more significant for the simple task than for the complex task,while the priming effect in the left APFC is more significant for the complex task than for the simple task.The reliable double dissociation may suggest the different roles of the left DLPFC and left APFC in data-driven scientific discovery.The left DLPFC (BA 46) may play a crucial role in rule identification,while the left APFC (BA 10) may be related to mental set maintenance needed during rule identification and extrapolation.展开更多
Based on the daily reanalysis data released by NCEP/NCAR and the daily precipi- tation of 753 Chinese stations from May to August during the period of 1960 to 2012, the statistical characteristics of the cold vortex i...Based on the daily reanalysis data released by NCEP/NCAR and the daily precipi- tation of 753 Chinese stations from May to August during the period of 1960 to 2012, the statistical characteristics of the cold vortex in northeastern China were analyzed. In addition, the strength index, which described the characteristics of the vortex consistently and fre- quently, and the geographical distribution were given by continuous anomalies of circulation. Based on this index, the activity routines of the cold vortex, characteristics of atmospheric circulation, and their effects on precipitation in northeastern China were analyzed. The results show that: the activities of the cold vortex exhibit remarkable features of annual and interde- cadal oscillation, and the vortex high frequency and its characteristics of atmospheric circula- tion are described more accurately by the strength index of the cold vortex, which shows a high correspondence with the vortex precipitation during early summer and midsummer in the northeast. In strong (weak) vortex years, the general circulation in the middle and high lati- tudes of Eurasia is to the advantage (disadvantage) of the formation, development and maintenance of the cold vortex, thus it is easy (difficult) to form the circulation which is bene- ficial to transmit vapor from south to north during the period of July to August. Blocking over the Ural Mountains prevails (does not prevail) in early summer, and blocking over the Sea of Okhotsk prevails (does not prevail) in midsummer. Areas where the subtropical high is too small (large) and moves toward the north too late (early) are better (worse) for the mainte- nance of the cold vortex in northeastern China.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.60775039 and 60875075)supported by the Grant-in-aid for Scientific Research (Grant No.18300053) from the Japanese Society for the Promotion of Science+2 种基金Support Center for Advanced Telecommunications Technology Research,Foundationthe Open Foundation of Key Laboratory of Multimedia and Intelligent Software Technology (Beijing University of Technology) Beijingthe Doctoral Research Fund of Beijing University of Technology (Grant No.00243)
文摘Although much has been known about how humans psychologically perform data-driven scientific discovery,less has been known about its brain mechanism.The number series completion is a typical data-driven scientific discovery task,and has been demonstrated to possess the priming effect,which is attributed to the regularity identification and its subsequent extrapolation.In order to reduce the heterogeneities and make the experimental task proper for a brain imaging study,the number magnitude and arithmetic operation involved in number series completion tasks are further restricted.Behavioral performance in Experiment 1 shows the reliable priming effect for targets as expected.Then,a factorial design (the priming effect:prime vs.target;the period length:simple vs.complex) of event-related functional magnetic resonance imaging (fMRI) is used in Experiment 2 to examine the neural basis of data-driven scientific discovery.The fMRI results reveal a double dissociation of the left DLPFC (dorsolateral prefrontal cortex) and the left APFC (anterior prefrontal cortex) between the simple (period length=1) and the complex (period length=2) number series completion task.The priming effect in the left DLPFC is more significant for the simple task than for the complex task,while the priming effect in the left APFC is more significant for the complex task than for the simple task.The reliable double dissociation may suggest the different roles of the left DLPFC and left APFC in data-driven scientific discovery.The left DLPFC (BA 46) may play a crucial role in rule identification,while the left APFC (BA 10) may be related to mental set maintenance needed during rule identification and extrapolation.
基金National Natural Science Foundation of China, No.41375078, No.41405094, No.41175083, No.41275096 Science and technology development plan in Jilin Province of China, No.20150204023 SF
文摘Based on the daily reanalysis data released by NCEP/NCAR and the daily precipi- tation of 753 Chinese stations from May to August during the period of 1960 to 2012, the statistical characteristics of the cold vortex in northeastern China were analyzed. In addition, the strength index, which described the characteristics of the vortex consistently and fre- quently, and the geographical distribution were given by continuous anomalies of circulation. Based on this index, the activity routines of the cold vortex, characteristics of atmospheric circulation, and their effects on precipitation in northeastern China were analyzed. The results show that: the activities of the cold vortex exhibit remarkable features of annual and interde- cadal oscillation, and the vortex high frequency and its characteristics of atmospheric circula- tion are described more accurately by the strength index of the cold vortex, which shows a high correspondence with the vortex precipitation during early summer and midsummer in the northeast. In strong (weak) vortex years, the general circulation in the middle and high lati- tudes of Eurasia is to the advantage (disadvantage) of the formation, development and maintenance of the cold vortex, thus it is easy (difficult) to form the circulation which is bene- ficial to transmit vapor from south to north during the period of July to August. Blocking over the Ural Mountains prevails (does not prevail) in early summer, and blocking over the Sea of Okhotsk prevails (does not prevail) in midsummer. Areas where the subtropical high is too small (large) and moves toward the north too late (early) are better (worse) for the mainte- nance of the cold vortex in northeastern China.