The bioavailability of humic substance-bound mercury (HS-Hg) has been established, while the distribution of HS-Hg in soils in relation to soil properties remains obscure. Path analysis and principal component analy...The bioavailability of humic substance-bound mercury (HS-Hg) has been established, while the distribution of HS-Hg in soils in relation to soil properties remains obscure. Path analysis and principal component analysis were employed in present study to investigate how soil factors influence the contents of HS-Hg in soils. Results showed that HS-Hg ranged from 0.0192 to 0.2051 mg/kg in soils. The two fractions existed in soils as humic acid-bound mercury (HA-Hg) 〉 fulvic acid-bound mercury (FA-Hg) and the ratio of HA-Hg/FA-Hg was 1.61 on the average. Soil organic carbon (OC) and HS favorably determined soil HS-Hg and the two fractions. The mercury source forming HS-Hg derived from soil total mercury and HS-Hg. FA-Hg and HA-Hg served as mercury source for each other. In acidic soils, FA-Hg and HA-Hg consistently rose with the increase of OC, and generally HA-Hg increased more dramatically. Soils with lower pH and lighter texture contained more HS-Hg, particularly fraction of FA-Hg. Among all influencing factors, organic material source showed the strongest effect, followed by other soil properties and soil mercury source.展开更多
基金The National Natural Science Foundation of China (No. 40201025) and the International Foundation for Sciences (No. C/3403-1)
文摘The bioavailability of humic substance-bound mercury (HS-Hg) has been established, while the distribution of HS-Hg in soils in relation to soil properties remains obscure. Path analysis and principal component analysis were employed in present study to investigate how soil factors influence the contents of HS-Hg in soils. Results showed that HS-Hg ranged from 0.0192 to 0.2051 mg/kg in soils. The two fractions existed in soils as humic acid-bound mercury (HA-Hg) 〉 fulvic acid-bound mercury (FA-Hg) and the ratio of HA-Hg/FA-Hg was 1.61 on the average. Soil organic carbon (OC) and HS favorably determined soil HS-Hg and the two fractions. The mercury source forming HS-Hg derived from soil total mercury and HS-Hg. FA-Hg and HA-Hg served as mercury source for each other. In acidic soils, FA-Hg and HA-Hg consistently rose with the increase of OC, and generally HA-Hg increased more dramatically. Soils with lower pH and lighter texture contained more HS-Hg, particularly fraction of FA-Hg. Among all influencing factors, organic material source showed the strongest effect, followed by other soil properties and soil mercury source.