通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和...通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和高精度感知的研究重点。从ISAC技术趋势、波形设计重要性、应用场景和发展现状四方面进行了简要介绍,对以通信为主的波形设计、以感知为主的波形设计和波形复用设计进行了分析总结,阐述了联合波形设计的一体化性能边界以及潜在的一体化波形新型设计方式;并对ISAC波形设计的发展方向进行展望。展开更多
基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳...基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳定模型.对ITO和Y/ITO表面吸附气体分子(NO和CO)模型的吸附性能进行了第一性原理计算.根据对比ITO和Y/ITO表面的吸附能和态密度计算结果可知,单原子钇负载提高了ITO表面的稳定性和吸附性能.根据对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度计算结果可知,NO和CO气体分子吸附均为自发行为,过程放热.且NO气体分子更容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感.展开更多
文摘通信感知一体化(Integrated Sensing and Communication,ISAC)作为6G的关键技术之一,广泛应用于智慧交通、智能家居等领域。随着频谱资源的紧缺、技术发展的融合,促使通信和感知功能的一体化,其中ISAC的波形设计是同时实现高效率通信和高精度感知的研究重点。从ISAC技术趋势、波形设计重要性、应用场景和发展现状四方面进行了简要介绍,对以通信为主的波形设计、以感知为主的波形设计和波形复用设计进行了分析总结,阐述了联合波形设计的一体化性能边界以及潜在的一体化波形新型设计方式;并对ISAC波形设计的发展方向进行展望。
文摘基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳定模型.对ITO和Y/ITO表面吸附气体分子(NO和CO)模型的吸附性能进行了第一性原理计算.根据对比ITO和Y/ITO表面的吸附能和态密度计算结果可知,单原子钇负载提高了ITO表面的稳定性和吸附性能.根据对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度计算结果可知,NO和CO气体分子吸附均为自发行为,过程放热.且NO气体分子更容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感.