Adsorbent has been widely used for the recovery and enrichment of rare metals from waste water.Herein,a graphene-based adsorbent,graphene oxide/Fe_(3)O_(4)(GO/Fe_(3)O_(4))nanocomposite,was prepared by a facile hydroth...Adsorbent has been widely used for the recovery and enrichment of rare metals from waste water.Herein,a graphene-based adsorbent,graphene oxide/Fe_(3)O_(4)(GO/Fe_(3)O_(4))nanocomposite,was prepared by a facile hydrothermal method,and characterized by X-ray diffraction,Scanning Electron Microscope,X-ray Photoelectron Spectroscopy,Zeta potential and magnetization.The material has been explored for the recovery of In from simulated waste water.The test results show that the nanocomposite has a reasonable adsorption capacity on indium in a wide pH range,e.g.,the adsorption percent and quantity of In(Ⅲ)from the aqueous solutions at pH=4 and C0=50 mg·L^(-1)are 91%and 43.98 mg·L^(-1),respectively.In addition,the nanocomposites maintain a 75.5%cycling capacity and a 71%removal efficiency after five continuous cycles due to their novel properties of high specific surface area and superparamagnetism.The pseudo-second-order adsorption model can be used to interpret the kinetic data.High adsorption efficiency and good reusability can make the nanocomposite a promising adsorbent for recovery of In(Ⅲ).展开更多
基金supported by the FJIRSM&IUE Joint Research Fund(No.RHZX-2018-006)。
文摘Adsorbent has been widely used for the recovery and enrichment of rare metals from waste water.Herein,a graphene-based adsorbent,graphene oxide/Fe_(3)O_(4)(GO/Fe_(3)O_(4))nanocomposite,was prepared by a facile hydrothermal method,and characterized by X-ray diffraction,Scanning Electron Microscope,X-ray Photoelectron Spectroscopy,Zeta potential and magnetization.The material has been explored for the recovery of In from simulated waste water.The test results show that the nanocomposite has a reasonable adsorption capacity on indium in a wide pH range,e.g.,the adsorption percent and quantity of In(Ⅲ)from the aqueous solutions at pH=4 and C0=50 mg·L^(-1)are 91%and 43.98 mg·L^(-1),respectively.In addition,the nanocomposites maintain a 75.5%cycling capacity and a 71%removal efficiency after five continuous cycles due to their novel properties of high specific surface area and superparamagnetism.The pseudo-second-order adsorption model can be used to interpret the kinetic data.High adsorption efficiency and good reusability can make the nanocomposite a promising adsorbent for recovery of In(Ⅲ).