The effect of ciliary neurotrophic factor (CNTF) on reactive astrogliosis was studied on a mechanical scratch model of the confluent astrocytic cultures from newborn rat brain. Following injury, the astrocytes at the ...The effect of ciliary neurotrophic factor (CNTF) on reactive astrogliosis was studied on a mechanical scratch model of the confluent astrocytic cultures from newborn rat brain. Following injury, the astrocytes at the edge of the injured area displayed a typical process of the reactive astrogliosis. This process included apparently hyperplastic change and significantly increased GFAP expression of the flat astrocytes, and migration to the injured area of the O-2A progenitor cells and their differentiation into process-bearing astrocytes. Exogenous CNTF applied to the cell cultures significantly promoted the hyperplasia and GFAP expression of the flat astrocytes. The results suggest that CNTF can enhance the reactive astrogliosis in the injured area.展开更多
文摘The effect of ciliary neurotrophic factor (CNTF) on reactive astrogliosis was studied on a mechanical scratch model of the confluent astrocytic cultures from newborn rat brain. Following injury, the astrocytes at the edge of the injured area displayed a typical process of the reactive astrogliosis. This process included apparently hyperplastic change and significantly increased GFAP expression of the flat astrocytes, and migration to the injured area of the O-2A progenitor cells and their differentiation into process-bearing astrocytes. Exogenous CNTF applied to the cell cultures significantly promoted the hyperplasia and GFAP expression of the flat astrocytes. The results suggest that CNTF can enhance the reactive astrogliosis in the injured area.