Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomi...Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.展开更多
Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage v...Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.展开更多
VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant i...VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.展开更多
Yttrium iron garnet(YIG)is a promising material for various terahertz applications due to its special optical properties.At present,a high-quality YIG wafer is the desire of terahertz communities and it is still chall...Yttrium iron garnet(YIG)is a promising material for various terahertz applications due to its special optical properties.At present,a high-quality YIG wafer is the desire of terahertz communities and it is still challenging to prepare substrate-free YIG single crystal films.In this work,we prepared wafer-level substrate-free La:YIG single crystal films,for the first time,to our knowledge.Terahertz optical and magneto-optical properties of La:YIG films were characterized by terahertz time domain spectroscopy(THz-TDS).Results show that the as-prepared La:YIG film has an insertion loss of less than 3 dB and a low absorption coefficient of less than10 cm-1below 1.6 THz.Benefitting from the thickness of the substrate-free YIG films and low insertion loss,their terahertz properties could be further manipulated by simply using a wafer-stacking technique.When four La:YIG films were stacked,there was an insertion loss of less than 10 dB in the range of 0.1-1.2 THz.The Faraday rotation angle of the four-layer-stacked La:YIG films reached 19°,and the isolation could reach17 dB.By further increasing the stacking number to eight pieces,a remarkable Faraday rotation angle of45°was achieved with an isolation of 23 dB,which is important for practical application in the THz band.This material may provide a milestone opportunity to make various non-reciprocal devices,such as isolators and phase shifters.展开更多
Compared to pure vortex waves,the superposition state of spherical waves and vortex waves has enough degrees of freedom to upgrade applications in particle manipulation,information encryption,and large-capacity commun...Compared to pure vortex waves,the superposition state of spherical waves and vortex waves has enough degrees of freedom to upgrade applications in particle manipulation,information encryption,and large-capacity communications.Here,we propose a new scheme to achieve superposition states and multichannel transmission of vortex and spherical waves.Two transmissive all-silicon metasurfaces that enable mutual interference between linearly polarized(LP)waves in the terahertz region are demonstrated.Type A can achieve interference between x and y polarized waves,while type B can achieve interference between x(or y)and x(or y)polarized waves.The multichannel transmission and superposition states of topological charges of+3,+2,and+4 are designed and demonstrated from theoretical,simulative,and experimental perspectives at 1.1 THz.In addition,the objective fact that the focused superposition state must be observed close to the focal plane is also revealed.The measured results are in good agreement with the theoretical and simulative results.This work provides an idea for the design of ultrathin terahertz devices and could be applied in the fields of information encryption and highfrequency communications.展开更多
Electromagnetic interference(EMI)shielding materials have received considerable attention in recent years.The EMI shielding effectiveness(SE)of materials depends on not only their composition but also their microstruc...Electromagnetic interference(EMI)shielding materials have received considerable attention in recent years.The EMI shielding effectiveness(SE)of materials depends on not only their composition but also their microstructures.Among various microstructure prototypes,porous structures provide the advantages of low density and high terahertz wave absorption.In this study,by using carbonised wood(CW)as a template,1-mm-thick MAX@CW composites(Ti2AlC@CW,V2A1C@CW,and Cr2AlC@CW)with a porous structure were fabricated through the molten salt method.The MAX@CW composites led to the formation of a conductive network and multilayer interface,which resulted in improved EMI SE.The average EMI SE values of the three MAX@CW composites were>45 dB in the frequency of 0.6-1.6 THz.Among the composites,V2A1C@CW exhibited the highest average EMI SE of 55 dB.展开更多
Surface-modified semiconductors show enormous potential for opto-terahertz(THz)spatial modulation due to their enhanced modulation depth(MD)along with their inherent broad bandwidth.Taking full advantage of the surfac...Surface-modified semiconductors show enormous potential for opto-terahertz(THz)spatial modulation due to their enhanced modulation depth(MD)along with their inherent broad bandwidth.Taking full advantage of the surface modification,a performance-enhanced,all-optical,fast switchable THz modulator was achieved here based on the surface-passivated Ga As wafer.With a decreased surface recombination rate and prolonged carrier lifetime induced by passivation,S-passivated Ga As was demonstrated as a viable candidate to enhance THz modulation performance in MD,especially at low photodoping levels.Despite a degraded modulation rate owing to the longer carrier lifetime,this passivated Ga As modulator simultaneously realizes a fast modulation at a 69-MHz speed and as high an MD as ~94% in a spectral wideband of 0.2-1.2 THz.The results demonstrated a new strategy to alleviate the tradeoff between high MD and speed in contrast to bare surfaces or heterogeneous films/unusual geometry on semiconductors including Si,Ge,and GaAs.展开更多
文摘Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.
基金supported by the National Key Research and Development Project of China under Grant 2018YFB1801500supported in part by The National Natural Science Foundation of China under Grant 6162780166 and Grant 61831012.
文摘Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.
基金financially supported by the National Natural Science Foundation of China (Nos. 51401046, 51572042, 61131005, 61021061, and 61271037)International Cooperation Projects (Nos. 2013HH0003 and 2015DFR50870)+3 种基金the 111 Project (No. B13042)the Sichuan Province S&T program (Nos. 2014GZ0003, 2015GZ0091, and 2015GZ0069)Fundamental Research Funds for the Central Universitiesthe start-up fund from the University of Electronic Science and Technology of China
文摘VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.
基金National Key Research and Development Program of China(2023YFB3811300,2023YFB3811305)National Natural Science Foundation of China(62235004,61831012,62371258,62311530115)+1 种基金Sichuan Province Science and Technology Support Program(2021JDTD0026,2023JDGD0012)Shenzhen Science and Technology Program((2021)105)。
文摘Yttrium iron garnet(YIG)is a promising material for various terahertz applications due to its special optical properties.At present,a high-quality YIG wafer is the desire of terahertz communities and it is still challenging to prepare substrate-free YIG single crystal films.In this work,we prepared wafer-level substrate-free La:YIG single crystal films,for the first time,to our knowledge.Terahertz optical and magneto-optical properties of La:YIG films were characterized by terahertz time domain spectroscopy(THz-TDS).Results show that the as-prepared La:YIG film has an insertion loss of less than 3 dB and a low absorption coefficient of less than10 cm-1below 1.6 THz.Benefitting from the thickness of the substrate-free YIG films and low insertion loss,their terahertz properties could be further manipulated by simply using a wafer-stacking technique.When four La:YIG films were stacked,there was an insertion loss of less than 10 dB in the range of 0.1-1.2 THz.The Faraday rotation angle of the four-layer-stacked La:YIG films reached 19°,and the isolation could reach17 dB.By further increasing the stacking number to eight pieces,a remarkable Faraday rotation angle of45°was achieved with an isolation of 23 dB,which is important for practical application in the THz band.This material may provide a milestone opportunity to make various non-reciprocal devices,such as isolators and phase shifters.
基金National Natural Science Foundation of China(61831012,62175021)Sichuan Science and Technology Program(2021JDTD0026)+1 种基金Sichuan Science and Technology Major Projects(2019ZDZX0026)Jiangxi Innovative Talent Program。
文摘Compared to pure vortex waves,the superposition state of spherical waves and vortex waves has enough degrees of freedom to upgrade applications in particle manipulation,information encryption,and large-capacity communications.Here,we propose a new scheme to achieve superposition states and multichannel transmission of vortex and spherical waves.Two transmissive all-silicon metasurfaces that enable mutual interference between linearly polarized(LP)waves in the terahertz region are demonstrated.Type A can achieve interference between x and y polarized waves,while type B can achieve interference between x(or y)and x(or y)polarized waves.The multichannel transmission and superposition states of topological charges of+3,+2,and+4 are designed and demonstrated from theoretical,simulative,and experimental perspectives at 1.1 THz.In addition,the objective fact that the focused superposition state must be observed close to the focal plane is also revealed.The measured results are in good agreement with the theoretical and simulative results.This work provides an idea for the design of ultrathin terahertz devices and could be applied in the fields of information encryption and highfrequency communications.
基金supported financially by the National Natural Science Foundation of China(Grant Nos.51902320,61831012,and U2004212)Qing Huang thanks International Partnership Program of Chinese Academy of Sciences(Grant No.174433KYSB20190019)+1 种基金the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2019R01003)Mian Li acknowledges the support from the fund of the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP201917).
文摘Electromagnetic interference(EMI)shielding materials have received considerable attention in recent years.The EMI shielding effectiveness(SE)of materials depends on not only their composition but also their microstructures.Among various microstructure prototypes,porous structures provide the advantages of low density and high terahertz wave absorption.In this study,by using carbonised wood(CW)as a template,1-mm-thick MAX@CW composites(Ti2AlC@CW,V2A1C@CW,and Cr2AlC@CW)with a porous structure were fabricated through the molten salt method.The MAX@CW composites led to the formation of a conductive network and multilayer interface,which resulted in improved EMI SE.The average EMI SE values of the three MAX@CW composites were>45 dB in the frequency of 0.6-1.6 THz.Among the composites,V2A1C@CW exhibited the highest average EMI SE of 55 dB.
基金Science Challenge Project(TZ2018003)National Natural Science Foundation of China(61831012)+1 种基金International Science and Technology Cooperation Programme(2015DFR50870)Sichuan Province Science and Technology Support Program(2021JDTD0026)。
文摘Surface-modified semiconductors show enormous potential for opto-terahertz(THz)spatial modulation due to their enhanced modulation depth(MD)along with their inherent broad bandwidth.Taking full advantage of the surface modification,a performance-enhanced,all-optical,fast switchable THz modulator was achieved here based on the surface-passivated Ga As wafer.With a decreased surface recombination rate and prolonged carrier lifetime induced by passivation,S-passivated Ga As was demonstrated as a viable candidate to enhance THz modulation performance in MD,especially at low photodoping levels.Despite a degraded modulation rate owing to the longer carrier lifetime,this passivated Ga As modulator simultaneously realizes a fast modulation at a 69-MHz speed and as high an MD as ~94% in a spectral wideband of 0.2-1.2 THz.The results demonstrated a new strategy to alleviate the tradeoff between high MD and speed in contrast to bare surfaces or heterogeneous films/unusual geometry on semiconductors including Si,Ge,and GaAs.