Carbonate concretions are conspicuous in organic-rich shales and are generally related to decomposition of organic matter.The black shales from the Chang 7 Member of the Upper Triassic Yanchang Formation of the southe...Carbonate concretions are conspicuous in organic-rich shales and are generally related to decomposition of organic matter.The black shales from the Chang 7 Member of the Upper Triassic Yanchang Formation of the southern Ordos Basin host abundant carbonate concretions,which provide a unique record of depositional and early diagenetic conditions of the paleo-lake sediments.However,little attention has been given to the genesis and growth processes of the concretions in these lacustrine petroleum source rocks.New petrographic observations and geochemical analysis show that the concretions are composed of calcite,phosphate fossil fragments,K-NH4-feldspar,quartz,bitumen,and minor Fe-dolomite.Phosphate minerals,mainly carbonate fluorapatite(CFA),show pervasive replacement by calcite,most of which contains phosphorus,ranging in concentration from 0.26 to 2.35 wt%.This suggests that the phosphate minerals are the precursors for concretion growth.Positiveδ13C(+5.6 to+12.4‰V-PDB)signatures and the absence of pyrite indicate that microbial methanogenesis was the dominant driver for concretion growth,rather than bacterial sulfate reduction.Quartz,bitumen,and Fe-dolomite are the last cements that occurred,at deep burial depths and high temperatures.The formation of phosphate minerals might have been induced by upwelling of phosphate-enriched deep water in the Late Triassic paleo-lake,which promoted phytoplankton blooms and further enrichment of organic matter.Extremely slow sedimentation rates of fine-grained detrital minerals,relative to dead organism accumulation,led to the high permeabilities of the organic-rich sediments and rapid concretion growth during shallow burial.The close association of phosphate-bearing carbonate concretions and organic-rich shales reflects that upwelling played a critical role in the formation of the high-quality petroleum source rocks in the Triassic paleo-Ordos lake.展开更多
Organic-inorganic interaction exists universally and is important in the process of mineral resources formation.It is the essential reason why organic oil,gas,coal and inorganic uranium coexist,accumulate,and minerali...Organic-inorganic interaction exists universally and is important in the process of mineral resources formation.It is the essential reason why organic oil,gas,coal and inorganic uranium coexist,accumulate,and mineralize in the same sedimentary basins.Hydrocarbon-generating simulation experiment was conducted using low-mature hydrocarbon source rock containing kerogen type III with uranium(UO2CO3 solution)added to study the effects of uranium on the hydrocarbon generation of hydrocarbon source rocks.Experiment results show that uranium can enhance the yield of gas hydrocarbon,promote the total gas output,and increase the total hydrocarbon production(mass or volume).Uranium may lower the hydrocarbon generation threshold temperature and lead to the generation of liquid hydrocarbon in the relative low temperature of hydrocarbon source rock.Uranium can enhance the yield of saturated hydrocarbon,promote the low molecular weight hydrocarbons generating,and in turn increase the content of CH4 and the content of dry gas of the generated hydrocarbons.Uranium is one of the potential inorganic accelerating factors of the immature hydrocarbons.展开更多
基金This work was supported by the National Natural Science Foundation of China(Program No.41330315)the Natural Science Foundation of Shaanxi Province(Program No.2020JQ-766)+1 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.20JK0838)the Opening Foundation of Shandong Key Laboratory of Depositional Mineralization&Sedimentary Mineral,Shandong University of Science and Technology(Program No.DMSM20190034).
文摘Carbonate concretions are conspicuous in organic-rich shales and are generally related to decomposition of organic matter.The black shales from the Chang 7 Member of the Upper Triassic Yanchang Formation of the southern Ordos Basin host abundant carbonate concretions,which provide a unique record of depositional and early diagenetic conditions of the paleo-lake sediments.However,little attention has been given to the genesis and growth processes of the concretions in these lacustrine petroleum source rocks.New petrographic observations and geochemical analysis show that the concretions are composed of calcite,phosphate fossil fragments,K-NH4-feldspar,quartz,bitumen,and minor Fe-dolomite.Phosphate minerals,mainly carbonate fluorapatite(CFA),show pervasive replacement by calcite,most of which contains phosphorus,ranging in concentration from 0.26 to 2.35 wt%.This suggests that the phosphate minerals are the precursors for concretion growth.Positiveδ13C(+5.6 to+12.4‰V-PDB)signatures and the absence of pyrite indicate that microbial methanogenesis was the dominant driver for concretion growth,rather than bacterial sulfate reduction.Quartz,bitumen,and Fe-dolomite are the last cements that occurred,at deep burial depths and high temperatures.The formation of phosphate minerals might have been induced by upwelling of phosphate-enriched deep water in the Late Triassic paleo-lake,which promoted phytoplankton blooms and further enrichment of organic matter.Extremely slow sedimentation rates of fine-grained detrital minerals,relative to dead organism accumulation,led to the high permeabilities of the organic-rich sediments and rapid concretion growth during shallow burial.The close association of phosphate-bearing carbonate concretions and organic-rich shales reflects that upwelling played a critical role in the formation of the high-quality petroleum source rocks in the Triassic paleo-Ordos lake.
基金supported by National Natural Science Foundation of China(Grant Nos.41202083,90814005)MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University(Grant No.BJ081334)+1 种基金National Science and Technology Major Project(Grant No.2008ZX05023-001-002)the National Important Basic Research Program of China(Grant No.2003CB214607)
文摘Organic-inorganic interaction exists universally and is important in the process of mineral resources formation.It is the essential reason why organic oil,gas,coal and inorganic uranium coexist,accumulate,and mineralize in the same sedimentary basins.Hydrocarbon-generating simulation experiment was conducted using low-mature hydrocarbon source rock containing kerogen type III with uranium(UO2CO3 solution)added to study the effects of uranium on the hydrocarbon generation of hydrocarbon source rocks.Experiment results show that uranium can enhance the yield of gas hydrocarbon,promote the total gas output,and increase the total hydrocarbon production(mass or volume).Uranium may lower the hydrocarbon generation threshold temperature and lead to the generation of liquid hydrocarbon in the relative low temperature of hydrocarbon source rock.Uranium can enhance the yield of saturated hydrocarbon,promote the low molecular weight hydrocarbons generating,and in turn increase the content of CH4 and the content of dry gas of the generated hydrocarbons.Uranium is one of the potential inorganic accelerating factors of the immature hydrocarbons.