The effect of alloying elements V and Al on microstructure and room temperature fracture toughness of an experimental Nb-Si in-situ composite was investigated. The Nb-Si alloys with different amount of V and Al were p...The effect of alloying elements V and Al on microstructure and room temperature fracture toughness of an experimental Nb-Si in-situ composite was investigated. The Nb-Si alloys with different amount of V and Al were prepared by non-consumable arc-melting furnace. The experimental results showed that with the addition of V and Al, the microstructure of the Nb-Si materials transformed from Nbss+Nb3Si to Nbss+Nb5Si3 and the lattice parameters of Nbss phase decreased, and the alloying element V promoted the formation of the finer Nbss structure. It was observed that the room temperature fracture toughness was improved by the addition of V and Al, and the optimum room-temperature fracture toughness of the material appeared in the alloy with 2.6at.%V and 3.6at.%Al. The improvement of room temperature fracture toughness may be mainly attributed to the increment of the volume fraction of Nbss phase and the decrement of the silicide phase size.展开更多
The effects of alloying elements Ti, Al and Hf on niobium silicides formation in the Nb-Si in situ composites have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission elec...The effects of alloying elements Ti, Al and Hf on niobium silicides formation in the Nb-Si in situ composites have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The binary, ternary and multicomponent alloys have been fabricated by vacuum non-consumable arc melting method. The results show that Ti tends to stabilize Nb3Si phase, while Al promotes the direct formation of β-Nb5Si3 phase with a tetrahedral D8m structure. Exceptionally, it seems that Hf is beneficial to the formation of γ-Nb5Si3 phase with a hexangular D88 structure. For the multicomponent Nb-Si in situ composites, the cooperative effects of different elements on niobium silicides formation basically maintain the character of ternary system.展开更多
文摘The effect of alloying elements V and Al on microstructure and room temperature fracture toughness of an experimental Nb-Si in-situ composite was investigated. The Nb-Si alloys with different amount of V and Al were prepared by non-consumable arc-melting furnace. The experimental results showed that with the addition of V and Al, the microstructure of the Nb-Si materials transformed from Nbss+Nb3Si to Nbss+Nb5Si3 and the lattice parameters of Nbss phase decreased, and the alloying element V promoted the formation of the finer Nbss structure. It was observed that the room temperature fracture toughness was improved by the addition of V and Al, and the optimum room-temperature fracture toughness of the material appeared in the alloy with 2.6at.%V and 3.6at.%Al. The improvement of room temperature fracture toughness may be mainly attributed to the increment of the volume fraction of Nbss phase and the decrement of the silicide phase size.
文摘The effects of alloying elements Ti, Al and Hf on niobium silicides formation in the Nb-Si in situ composites have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The binary, ternary and multicomponent alloys have been fabricated by vacuum non-consumable arc melting method. The results show that Ti tends to stabilize Nb3Si phase, while Al promotes the direct formation of β-Nb5Si3 phase with a tetrahedral D8m structure. Exceptionally, it seems that Hf is beneficial to the formation of γ-Nb5Si3 phase with a hexangular D88 structure. For the multicomponent Nb-Si in situ composites, the cooperative effects of different elements on niobium silicides formation basically maintain the character of ternary system.