While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life o...While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life of the alloy.To determine the effects and causes of pre-deformation and heat treatment on the mechanical properties and FCG rate of2195 Al-Li alloy, and to provide a suitable calculation model for the FCG rate under different pre-deformation conditions, 2195 Al-Li alloy specimens with different degrees of pre-rolling(0, 3%, 6%, and 9%) were investigated. The experimental results indicate that with the increase of pre-rolling, the density of the T1phase and the uniformity of the S′distribution and the microhardness, tensile strength, and yield strength of the alloy increase and at the same time the FCG rate increases, and thus the fatigue life is reduced. It was also found that the normalized stress intensity factor of elastic modulus(E) can be applied to correlate the FCG rate of pre-rolled 2195 Al-Li alloy with constant C and K parameters.展开更多
基金Project(U21A20132) supported by the National Natural Science Foundation of ChinaProject(Gui Renzi2019(13))supported by the Guangxi Specially-invited Experts Foundation of Guangxi Zhuang Autonomous Region,China。
文摘While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life of the alloy.To determine the effects and causes of pre-deformation and heat treatment on the mechanical properties and FCG rate of2195 Al-Li alloy, and to provide a suitable calculation model for the FCG rate under different pre-deformation conditions, 2195 Al-Li alloy specimens with different degrees of pre-rolling(0, 3%, 6%, and 9%) were investigated. The experimental results indicate that with the increase of pre-rolling, the density of the T1phase and the uniformity of the S′distribution and the microhardness, tensile strength, and yield strength of the alloy increase and at the same time the FCG rate increases, and thus the fatigue life is reduced. It was also found that the normalized stress intensity factor of elastic modulus(E) can be applied to correlate the FCG rate of pre-rolled 2195 Al-Li alloy with constant C and K parameters.