Introduction: The human optic nerve head (ONH) is vulnerable to the damage in glaucomatous high intraocular pressure (IOP). In order to analyze the human ONH head stress and deformation in high IOP, an in vivo th...Introduction: The human optic nerve head (ONH) is vulnerable to the damage in glaucomatous high intraocular pressure (IOP). In order to analyze the human ONH head stress and deformation in high IOP, an in vivo three-dimensional (3D) ONH model was reconstructed by optical coherence tomography (OCT) images and magnetic resonance imaging (MRI) images. Materials and Methods: A human eye was scanned by MRI and OCT in serial imaging protocol. The sclera and ONH were segmented from the images, and 3D models were reconstructed by multimodality image registration. Through the morphological segmentation, part of lamina cribrosa (LC) was acquired and reconstructed in combination with the ONH and sclera. Results: The models of ONH and sclera were got, the part of LC was included in the model. In the analysis of FEM, the ONH was compressed and the cup/disk ratio was changed obviously in high glaucomatous IOP. Discussion: This study described a method to build a 3D in vivo ONH model by image processing. It can be used in biomechanieal analysis, and provide the stress state of ONH for the research about the fundus damage of glaucoma.展开更多
基金National Natural Science Foundation of Chinagrant number: 31070840 and 11102123+3 种基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipalitygrant number: PHR201110506General Program of Science and Technology Development Project of Beijing Municipal Education Commissiongrant number: KM201110025009
文摘Introduction: The human optic nerve head (ONH) is vulnerable to the damage in glaucomatous high intraocular pressure (IOP). In order to analyze the human ONH head stress and deformation in high IOP, an in vivo three-dimensional (3D) ONH model was reconstructed by optical coherence tomography (OCT) images and magnetic resonance imaging (MRI) images. Materials and Methods: A human eye was scanned by MRI and OCT in serial imaging protocol. The sclera and ONH were segmented from the images, and 3D models were reconstructed by multimodality image registration. Through the morphological segmentation, part of lamina cribrosa (LC) was acquired and reconstructed in combination with the ONH and sclera. Results: The models of ONH and sclera were got, the part of LC was included in the model. In the analysis of FEM, the ONH was compressed and the cup/disk ratio was changed obviously in high glaucomatous IOP. Discussion: This study described a method to build a 3D in vivo ONH model by image processing. It can be used in biomechanieal analysis, and provide the stress state of ONH for the research about the fundus damage of glaucoma.