The beam windows of high-energy beam lines are important,and it is sometimes difficult to design because it is necessary to ensure particle propagation with minimum disturbance and fulfill mechanical requirements at t...The beam windows of high-energy beam lines are important,and it is sometimes difficult to design because it is necessary to ensure particle propagation with minimum disturbance and fulfill mechanical requirements at the same time.The upstream decay pipe window of the long baseline neutrino facility at Fermilab has an extremely large diameter(1.8 m),with a thickness of only 1.5 mm to separate the helium atmosphere in the decay pipe and the nitrogen atmosphere on the other side.Furthermore,the center of this dish-shaped window is expected to be a200-mm-diameter beryllium dish welded to the outside aluminum alloy A6061,and this welded combination must withstand extreme conditions of a 2.4-MW,high-energy proton beam without leakage.These severe conditions make the design of this window an unprecedented challenge.This paper describes the static thermal-structural analyses based on which the structure has been optimized,as well as dynamic analyses for understanding the shockwave effects originating in the beam.After optimization,the maximum von Mises stresses in the window decreased significantly in both normal operation and accident cases,making our design very reasonable.展开更多
The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3...The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.展开更多
Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, ...Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, 'The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations.' In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the influence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2×2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be used to explain the emergence of cooperation in the Prisoner is Dilemma Games to some extent. Some specific examples are given to illustrate our results.展开更多
Introduction China Spallation Neutron Source(CSNS)is an accelerator-based pulsed neutron source which produces neutron with spallation reaction induced by proton bombarding tungsten target.With increasing beam powers ...Introduction China Spallation Neutron Source(CSNS)is an accelerator-based pulsed neutron source which produces neutron with spallation reaction induced by proton bombarding tungsten target.With increasing beam powers and influences on target,near-target monitoring becomes extreme necessary.In this situation,an optical imaging system for proton beam diagnostics and monitoring near the target is being developed at CSNS,which can provide real-time images of the beam on target and beam distribution information.Target imaging system design and development In the design of CSNS target imaging system,coating of Cr^(3+):Al_(2)O_(3) is used to convert particle radiation into emission light.According to the geometry limits of CSNS target station,a special optical system was designed and fabricated to collect the emission light.When the proton beams strike on the target,the coating on the target will be excited,emitting luminescence at the same time.The mirrors and lenses of the optical system image the distribution of emission light into a radiation-hard imaging fiber,which transmits the images to the GigE camera located at low-dose area outside of the target station.Software was written on the LabView platform to control the camera and analyze the images on line.Mock-up of the imaging system was manufactured to test and evaluate the performances of the system.Some important characteristics of the system were obtained and studied.Conclusion Tests on the mock-up of the system present reliably expectation for beam diagnostics.The imaging system has been installed at CSNS recently.More work will be continued to improve the properties of the system.展开更多
Introduction To set up an online proton beam diagnostic system near the neutron production target of China Spallation Neutron Source(CSNS),a luminescence coating sprayed on the target windowand a corresponding optic s...Introduction To set up an online proton beam diagnostic system near the neutron production target of China Spallation Neutron Source(CSNS),a luminescence coating sprayed on the target windowand a corresponding optic system were fabricated.In the work,the fabrication of Al_(2)O_(3):Cr^(3+) coating was explored.Measurements on the sprayed samples were performed to analyze the characteristics of the Al_(2)O_(3):Cr^(3+) coating.Fabrication and tests of coating samples Three kinds of powders with different Cr concentrations were used to fabricate the luminescence coating samples.The flame spraying,plasma spraying and D-gun spraying processes were explored.Photoluminescence(PL),X-ray diffraction(XRD),scanned electron mirror(SEM)and radioluminescence experiment by 300 MeV deuterium beam were carried out to analyze and characterize the samples.Results The emission spectrum excited by 532-nm laser has two obvious peaks at 692.9 nm and 694.3 nm.The samples by flame spraying process with the powders obtained from melting method show higher luminescence intensity than the samples by plasma spraying process.It is observed that the luminescence intensity has some relationships with the alpha phase in the samples,which is deduced from the XRD and photoluminescence tests results.A lower temperature during the flame spraying process will help to keep more alpha phase in the material.The selected four samples show successful fluoresced results in the radioluminescence experiment.Conclusions The luminescence intensity of the coating is improved greatly by the studies on the fabrication process and the characteristics of the samples.The luminescence coating used in beam diagnostics will be fabricated by the confirmed technical process.More works will be continued to improve the characteristics of the luminescence light by controlling Cr concentration and annealing in 1200∼2000℃ environment in the future.展开更多
基金supported by the National Key Research and Development Program of China(No.2017YFE0106100)。
文摘The beam windows of high-energy beam lines are important,and it is sometimes difficult to design because it is necessary to ensure particle propagation with minimum disturbance and fulfill mechanical requirements at the same time.The upstream decay pipe window of the long baseline neutrino facility at Fermilab has an extremely large diameter(1.8 m),with a thickness of only 1.5 mm to separate the helium atmosphere in the decay pipe and the nitrogen atmosphere on the other side.Furthermore,the center of this dish-shaped window is expected to be a200-mm-diameter beryllium dish welded to the outside aluminum alloy A6061,and this welded combination must withstand extreme conditions of a 2.4-MW,high-energy proton beam without leakage.These severe conditions make the design of this window an unprecedented challenge.This paper describes the static thermal-structural analyses based on which the structure has been optimized,as well as dynamic analyses for understanding the shockwave effects originating in the beam.After optimization,the maximum von Mises stresses in the window decreased significantly in both normal operation and accident cases,making our design very reasonable.
基金support from diverse funding sources,including the National Key Program for S&T Research and Development of the Ministry of Science and Technology(MOST),Yifang Wang's Science Studio of the Ten Thousand Talents Project,the CAS Key Foreign Cooperation Grant,the National Natural Science Foundation of China(NSFC)Beijing Municipal Science&Technology Commission,the CAS Focused Science Grant,the IHEP Innovation Grant,the CAS Lead Special Training Programthe CAS Center for Excellence in Particle Physics,the CAS International Partnership Program,and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 71231007, 71071119, and 60574071
文摘Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, 'The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations.' In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the influence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2×2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be used to explain the emergence of cooperation in the Prisoner is Dilemma Games to some extent. Some specific examples are given to illustrate our results.
基金This work was supported by the China Spalla-tion Neutron Source project,the National Science Foundation of China(Grant Nos.11575289)the Project on the Integration of Indus-try,Education&Research of Guangdong Province,China(Grant No.2015B090901048).
文摘Introduction China Spallation Neutron Source(CSNS)is an accelerator-based pulsed neutron source which produces neutron with spallation reaction induced by proton bombarding tungsten target.With increasing beam powers and influences on target,near-target monitoring becomes extreme necessary.In this situation,an optical imaging system for proton beam diagnostics and monitoring near the target is being developed at CSNS,which can provide real-time images of the beam on target and beam distribution information.Target imaging system design and development In the design of CSNS target imaging system,coating of Cr^(3+):Al_(2)O_(3) is used to convert particle radiation into emission light.According to the geometry limits of CSNS target station,a special optical system was designed and fabricated to collect the emission light.When the proton beams strike on the target,the coating on the target will be excited,emitting luminescence at the same time.The mirrors and lenses of the optical system image the distribution of emission light into a radiation-hard imaging fiber,which transmits the images to the GigE camera located at low-dose area outside of the target station.Software was written on the LabView platform to control the camera and analyze the images on line.Mock-up of the imaging system was manufactured to test and evaluate the performances of the system.Some important characteristics of the system were obtained and studied.Conclusion Tests on the mock-up of the system present reliably expectation for beam diagnostics.The imaging system has been installed at CSNS recently.More work will be continued to improve the properties of the system.
基金Supported by the China Spallation Neutron Source Project,the National Science Foundation of China(Grant Nos.11575289)the Project onthe Integration of Industry,Education&Research of Guangdong Province,China(Grant No.2015B090901048).
文摘Introduction To set up an online proton beam diagnostic system near the neutron production target of China Spallation Neutron Source(CSNS),a luminescence coating sprayed on the target windowand a corresponding optic system were fabricated.In the work,the fabrication of Al_(2)O_(3):Cr^(3+) coating was explored.Measurements on the sprayed samples were performed to analyze the characteristics of the Al_(2)O_(3):Cr^(3+) coating.Fabrication and tests of coating samples Three kinds of powders with different Cr concentrations were used to fabricate the luminescence coating samples.The flame spraying,plasma spraying and D-gun spraying processes were explored.Photoluminescence(PL),X-ray diffraction(XRD),scanned electron mirror(SEM)and radioluminescence experiment by 300 MeV deuterium beam were carried out to analyze and characterize the samples.Results The emission spectrum excited by 532-nm laser has two obvious peaks at 692.9 nm and 694.3 nm.The samples by flame spraying process with the powders obtained from melting method show higher luminescence intensity than the samples by plasma spraying process.It is observed that the luminescence intensity has some relationships with the alpha phase in the samples,which is deduced from the XRD and photoluminescence tests results.A lower temperature during the flame spraying process will help to keep more alpha phase in the material.The selected four samples show successful fluoresced results in the radioluminescence experiment.Conclusions The luminescence intensity of the coating is improved greatly by the studies on the fabrication process and the characteristics of the samples.The luminescence coating used in beam diagnostics will be fabricated by the confirmed technical process.More works will be continued to improve the characteristics of the luminescence light by controlling Cr concentration and annealing in 1200∼2000℃ environment in the future.