机载雷达下视工作面临严重的地海杂波,雷达平台运动造成杂波多普勒频率严重扩散,将微弱目标完全淹没。空时自适应处理(space time adaptive processing,STAP)技术通过联合多天线脉冲的接收信号,能够有效地抑制杂波,实现运动目标检测。...机载雷达下视工作面临严重的地海杂波,雷达平台运动造成杂波多普勒频率严重扩散,将微弱目标完全淹没。空时自适应处理(space time adaptive processing,STAP)技术通过联合多天线脉冲的接收信号,能够有效地抑制杂波,实现运动目标检测。对于非正侧视阵列高速平台雷达,杂波距离依赖和距离模糊严重制约着目标检测性能。基于多载频频控阵,通过发射一组载频不同的正交信号,在杂波回波中,获得新的发射维自由度,并根据不同模糊在发射维的差异分离各模糊区域。此外,通过进一步对分离后的近程进行杂波补偿,利用降维STAP实现杂波抑制。仿真结果验证了所提方法的有效性。展开更多
针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的...针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的处理,并将超分辨阵列信号处理方法应用到目标的参数估计中,从而把目标距离和速度的估计等效成阵列中二维参数的估计,解决了由于载频重频联合捷变所带来的目标参数估计难题。仿真实验表明,所提方法能有效实现对目标距离和速度的超分辨估计。展开更多
The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the...The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the quality of the training datasets. However, real-world data is not perfect and often suffers from noise. This paper gives an overview of noise filtering methods. Firstly, the types of noise and the consequences of class noise on machine learning are presented. Secondly, class noise handling methods at both the data level and the algorithm level are introduced. Then ensemble-based class noise handling methods including class noise removal, correction, and noise robust ensemble learners are presented. Finally, a summary of existing data-cleaning techniques is given.展开更多
数字射频存储器(digital radio frequency memory,DRFM)通过截获雷达发射信号并对其进行调制和转发,在距离维上形成欺骗式干扰,严重影响了雷达对目标的检测与跟踪。针对这一问题,提出一种捷变频联合数学形态学的密集假目标干扰抑制算法...数字射频存储器(digital radio frequency memory,DRFM)通过截获雷达发射信号并对其进行调制和转发,在距离维上形成欺骗式干扰,严重影响了雷达对目标的检测与跟踪。针对这一问题,提出一种捷变频联合数学形态学的密集假目标干扰抑制算法。首先,采用最大类间方差法(Otsu)对脉冲压缩后的数据进行二值化处理。然后,通过数学形态学中的开运算抑制干扰和噪声。最后,通过二维稀疏重构获得距离速度二维高分辨,实现对目标的检测。仿真实验与实际雷达和干扰机对抗实验表明,该方法可以获得良好的抗干扰性能和目标检测性能。展开更多
文摘机载雷达下视工作面临严重的地海杂波,雷达平台运动造成杂波多普勒频率严重扩散,将微弱目标完全淹没。空时自适应处理(space time adaptive processing,STAP)技术通过联合多天线脉冲的接收信号,能够有效地抑制杂波,实现运动目标检测。对于非正侧视阵列高速平台雷达,杂波距离依赖和距离模糊严重制约着目标检测性能。基于多载频频控阵,通过发射一组载频不同的正交信号,在杂波回波中,获得新的发射维自由度,并根据不同模糊在发射维的差异分离各模糊区域。此外,通过进一步对分离后的近程进行杂波补偿,利用降维STAP实现杂波抑制。仿真结果验证了所提方法的有效性。
文摘针对载频重频联合捷变体制雷达目标参数估计问题,提出了一种新的基于多重信号分类(multiple signal classification,MUSIC)算法的载频重频联合捷变雷达目标参数估计方法。通过信号模型的空时等效,将时域信号的处理等效成空域阵列信号的处理,并将超分辨阵列信号处理方法应用到目标的参数估计中,从而把目标距离和速度的估计等效成阵列中二维参数的估计,解决了由于载频重频联合捷变所带来的目标参数估计难题。仿真实验表明,所提方法能有效实现对目标距离和速度的超分辨估计。
基金supported by the National Natural Science Foundation of China (62201438,61772397,12005169)the Basic Research Program of Natural Sciences of Shaanxi Province (2021JC-23)+2 种基金Yulin Science and Technology Bureau Science and Technology Development Special Project (CXY-2020-094)Shaanxi Forestry Science and Technology Innovation Key Project (SXLK2022-02-8)the Project of Shaanxi F ederation of Social Sciences (2022HZ1759)。
文摘The development of image classification is one of the most important research topics in remote sensing. The prediction accuracy depends not only on the appropriate choice of the machine learning method but also on the quality of the training datasets. However, real-world data is not perfect and often suffers from noise. This paper gives an overview of noise filtering methods. Firstly, the types of noise and the consequences of class noise on machine learning are presented. Secondly, class noise handling methods at both the data level and the algorithm level are introduced. Then ensemble-based class noise handling methods including class noise removal, correction, and noise robust ensemble learners are presented. Finally, a summary of existing data-cleaning techniques is given.
文摘数字射频存储器(digital radio frequency memory,DRFM)通过截获雷达发射信号并对其进行调制和转发,在距离维上形成欺骗式干扰,严重影响了雷达对目标的检测与跟踪。针对这一问题,提出一种捷变频联合数学形态学的密集假目标干扰抑制算法。首先,采用最大类间方差法(Otsu)对脉冲压缩后的数据进行二值化处理。然后,通过数学形态学中的开运算抑制干扰和噪声。最后,通过二维稀疏重构获得距离速度二维高分辨,实现对目标的检测。仿真实验与实际雷达和干扰机对抗实验表明,该方法可以获得良好的抗干扰性能和目标检测性能。