Interest in energy harvesters has grown rapidly over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further p...Interest in energy harvesters has grown rapidly over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further performance enhancement. The research effort in the MEMS Piezoelectric vibration energy harvester designed using three types of cantilever materials, Lithium Niobate (LiNbO3), Aluminum Nitride (AlN) and Zinc Oxide (ZnO) with different substrate materials: aluminum, steel and silicon using COMSOL Multiphysics package were designed and analyzed. Voltage, mechanical power and electrical power versus frequency for different cantilever materials and substrates were modeled and simulated using Finite element method (FEM). The resonant frequencies of the LiNbO3/Al, AlN/Al and ZnO/Al systems were found to be 187.5 Hz, 279.5 Hz and 173.5 Hz, respectively. We found that ZnO/Al system yields optimum voltage and electrical power values of 8.2 V and 2.8 mW, respectively. For ZnO cantilever on aluminum, steel and silicon substrates, we found the resonant frequencies to be 173.5 Hz, 170 Hz and 175 Hz, respectively. Interestingly, ZnO/steel yields optimal voltage and electrical power values of 9.83 V and 4.02 mW, respectively. Furthermore, all systems were studied at different differentiate frequencies. We found that voltage and electrical power have increased as the acceleration has increased.展开更多
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica...Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.展开更多
文摘Interest in energy harvesters has grown rapidly over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further performance enhancement. The research effort in the MEMS Piezoelectric vibration energy harvester designed using three types of cantilever materials, Lithium Niobate (LiNbO3), Aluminum Nitride (AlN) and Zinc Oxide (ZnO) with different substrate materials: aluminum, steel and silicon using COMSOL Multiphysics package were designed and analyzed. Voltage, mechanical power and electrical power versus frequency for different cantilever materials and substrates were modeled and simulated using Finite element method (FEM). The resonant frequencies of the LiNbO3/Al, AlN/Al and ZnO/Al systems were found to be 187.5 Hz, 279.5 Hz and 173.5 Hz, respectively. We found that ZnO/Al system yields optimum voltage and electrical power values of 8.2 V and 2.8 mW, respectively. For ZnO cantilever on aluminum, steel and silicon substrates, we found the resonant frequencies to be 173.5 Hz, 170 Hz and 175 Hz, respectively. Interestingly, ZnO/steel yields optimal voltage and electrical power values of 9.83 V and 4.02 mW, respectively. Furthermore, all systems were studied at different differentiate frequencies. We found that voltage and electrical power have increased as the acceleration has increased.
文摘Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.