Membrane technology is ideal for removing aqueous humic acid,but humic acid deposits cause membrane fouling,a significant challenge that limits its application.Herein,this work proposed an alternative approach to the ...Membrane technology is ideal for removing aqueous humic acid,but humic acid deposits cause membrane fouling,a significant challenge that limits its application.Herein,this work proposed an alternative approach to the controllably magnetically induced magnetohybrid polyoxometalate(magneto-HPOM)nanocomposite migration toward the polyethersulfone(PES)membrane surface under a magnetic field to enhance the self-cleaning and antifouling functionalities of the membrane.Before incorporating magneto-HPOM nanocomposite into the PES casting solution,functionalized magnetite nanoparticles(F-MNP)were first coated with HPOM photocatalyst to fabricate a magneto-HPOM-PES membrane.It was shown that the apparent impacts of this novel magneto-HPOM-PES membrane on the hydrophilic behavior and photocatalytic properties of the magneto-HPOM nanocomposite improve the hydrophilicity,separation performance,antifouling and self-cleaning properties of the membrane compared with neat PES membrane.Furthermore,after exposure to ultraviolet light,the magneto-HPOM-PES membrane can be recovered after three cycles with a flux recovery ratio of 107.95%,100.06%,and 95.56%,which is attributed to the temporal super hydrophilicity effect.Meanwhile,the magneto-HPOM-PES membrane could efficiently maintain 100%humic acid rejection for the first and second cycles and 99.81%for the third cycle.This study revealed a novel approach to fabricating membranes with high antifouling and self-cleaning properties for water treatment.展开更多
基金The authors would like to acknowledge the support from the Fundamental Research Grant Scheme(FRGS)under grant number of FRGS/1/2021/TK0/UNIMAP/02/3 from the Ministry of Higher Education MalaysiaFurthermore,sincere indebtedness and gratitude are addressed to Universiti Malaysia Perlis(UniMAP).
文摘Membrane technology is ideal for removing aqueous humic acid,but humic acid deposits cause membrane fouling,a significant challenge that limits its application.Herein,this work proposed an alternative approach to the controllably magnetically induced magnetohybrid polyoxometalate(magneto-HPOM)nanocomposite migration toward the polyethersulfone(PES)membrane surface under a magnetic field to enhance the self-cleaning and antifouling functionalities of the membrane.Before incorporating magneto-HPOM nanocomposite into the PES casting solution,functionalized magnetite nanoparticles(F-MNP)were first coated with HPOM photocatalyst to fabricate a magneto-HPOM-PES membrane.It was shown that the apparent impacts of this novel magneto-HPOM-PES membrane on the hydrophilic behavior and photocatalytic properties of the magneto-HPOM nanocomposite improve the hydrophilicity,separation performance,antifouling and self-cleaning properties of the membrane compared with neat PES membrane.Furthermore,after exposure to ultraviolet light,the magneto-HPOM-PES membrane can be recovered after three cycles with a flux recovery ratio of 107.95%,100.06%,and 95.56%,which is attributed to the temporal super hydrophilicity effect.Meanwhile,the magneto-HPOM-PES membrane could efficiently maintain 100%humic acid rejection for the first and second cycles and 99.81%for the third cycle.This study revealed a novel approach to fabricating membranes with high antifouling and self-cleaning properties for water treatment.