采用数据独立采集蛋白质组学技术分析4℃冷藏6 d的原料乳差异蛋白质组成及其生物学功能。冷藏过程中,共鉴定到902种蛋白质。其中,冷藏前期(d 0 vs d 3)和冷藏后期(d 3 vs d 6)分别筛选出70种和71种差异表达蛋白。生物信息学分析发现冷...采用数据独立采集蛋白质组学技术分析4℃冷藏6 d的原料乳差异蛋白质组成及其生物学功能。冷藏过程中,共鉴定到902种蛋白质。其中,冷藏前期(d 0 vs d 3)和冷藏后期(d 3 vs d 6)分别筛选出70种和71种差异表达蛋白。生物信息学分析发现冷藏前期差异蛋白具有对神经生长因子的刺激反应和细胞组织的调控等功能,主要参与了细胞的生物学过程;冷藏后期差异蛋白具有碳水化合物代谢过程和RNA代谢过程的调节等功能,主要参与了糖代谢途径。蛋白-蛋白互作网络分析表明,细胞分裂控制蛋白42同源物(CDC42)是两个冷藏阶段共有的关键节点蛋白,该蛋白与细胞的吞噬作用密切相关。上述结果揭示了冷藏过程中的蛋白质组成差异和功能的多样性,为原料乳的冷藏提供了理论依据,对原料乳的质量控制具有重要意义。展开更多
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou...Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.展开更多
The complex permittivity of baijiu varies with frequency,and dielectric spectroscopy has been used to evaluate the quality.To simplify the analysis and reduce the number of the parameters,a dielectric relaxation model...The complex permittivity of baijiu varies with frequency,and dielectric spectroscopy has been used to evaluate the quality.To simplify the analysis and reduce the number of the parameters,a dielectric relaxation model is often used to fit the permittivity data.However,existing fitting methods such as the least squares and particle swarm optimization methods are often computationally complex and require preset initial values.Therefore,a simpler calculation method of the relaxation parameters considering the geometric characteristics of the permittivity spectrum is proposed.It is based on the relationship between the Cole-Cole relaxation parameters and the Cole-Cole diagram,which is fitted by a geometric method.First,the concepts of the Cole-Cole parameters and the diagram are introduced,and then the process of obtaining the parameters from the complex permittivity measurement data is explained.Taking baijiu with 56%alcohol by volume(ABV)as an example,the fitting is better than the least squares method and similar to the particle swarm optimization.This method is then used for the parameter fitting of baijiu with ABV of 42-52%,and the average error is less than 1%,demonstrating its wider applicability.Finally,a prediction model is used for baijiu with 53%ABV,and the error is only 1.51%.Hence,the method can be applied to the measurement of ABV of baijiu.展开更多
为探究原料乳在4℃冷藏过程中的脂质变化,从而指导乳及乳制品的后期加工,该研究采用超高效液相色谱-三重四级杆复合线性离子阱质谱技术分别对冷藏第0、2、3、4、6天的原料乳脂质进行绝对定性定量分析。结果表明,原料乳共检出20种脂质亚...为探究原料乳在4℃冷藏过程中的脂质变化,从而指导乳及乳制品的后期加工,该研究采用超高效液相色谱-三重四级杆复合线性离子阱质谱技术分别对冷藏第0、2、3、4、6天的原料乳脂质进行绝对定性定量分析。结果表明,原料乳共检出20种脂质亚类、880种脂质分子,其中甘油三脂、磷脂酰乙醇胺、磷脂酰胆碱亚类含量最高;以P值<0.05,变量重要性投影(variable importance projection,VIP)>1为标准共筛选出420种显著性差异脂质代谢物,以P值<0.01,VIP>1为标准共筛选出98种极显著性差异脂质代谢物。整个冷藏过程中,极显著性差异脂质分子含量呈下降趋势,其中第3天与第4天对比组(D3 vs D4)脂质变化最为明显,冷藏3~4 d是原料乳脂质变化的关键阶段。对D3vs D4组的极显著差异脂质进行京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路分析,10种脂质分子被注释到6条代谢途径中,其中磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇、磷脂酰基丝氨酸被注释到甘油磷脂代谢及神经酰胺、鞘磷脂被注释到鞘脂代谢是该阶段的主要代谢途径。研究结果为探明原料乳冷藏过程中的脂质变化、划定脂肪水解的关键期提供理论依据,进而为后期乳制品的加工提供数据参考。展开更多
In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely us...In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely used as an additive in electrolytes to build a high-quality SEI,but its self-sacrificial nature limits the ability to mitigate the shuttle effect and stabilize Li anode during long-term cycling.To counteract LiNO_(3) consumption during long-term cycling without using a high initial concentration,inspired by sustainedrelease drugs,we encapsulated LiNO_(3) in lithiated Nafion polymer and added an electrolyte co-solvent(1,1,2,2-tetrafluoroethylene 2,2,2-trifluoromethyl ether) with poor LiNO_(3) solubility to construct highquality and durable F-and N-rich SEI.Theoretical calculations,experiments,multiphysics simulations,and in-situ observations confirmed that the F-and N-rich SEI can modulate lithium deposition behavior and allow persistent repair of SEI during prolonged cycling.Hence,the F-and N-rich SEI improves the Li anode cycling CE to 99.63% and alleviates the shuttle effect during long-term cycling.The lithium anode with sustainable F-and N-rich SEI shows a stable Li plating/stripping over 2000 h at 1 mA cm^(-2).As expected,Li‖S full cells with this SEI achieved a long lifespan of 250 cycles,far exceeding cells with a routine SEI.The Li‖S pouch cell based on F-and N-rich SEI also can achieve a high energy density of about300 Wh kg^(-1) at initial cycles.This strategy provides a novel design for high-quality and durable SEls in LSBs and may also be extendable to other alkali metal batteries.展开更多
Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD rea...Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD reactor(instead of a traditional metal electrode) for highly efficient ozone generation. The results demonstrated that a high O_(3) yield of 242 g k Wh^(-1) with a concentration of 14.6 g m^(-3)O_(3) was achieved. The power transmission mechanism works because NaCl aqueous solution behaves as a capacitor when an alternating pulse voltage below 8 k Hz is used.Compared with the resistance of the discharge barrier and discharge space, the resistance of NaCl aqueous solution can be ignored, which ensures that O_(3) is generated efficiently. It is expected that O_(3) generation using NaCl aqueous solution as a novel electrode in a DBD reactor could be an alternative technology with good application prospects.展开更多
文摘采用数据独立采集蛋白质组学技术分析4℃冷藏6 d的原料乳差异蛋白质组成及其生物学功能。冷藏过程中,共鉴定到902种蛋白质。其中,冷藏前期(d 0 vs d 3)和冷藏后期(d 3 vs d 6)分别筛选出70种和71种差异表达蛋白。生物信息学分析发现冷藏前期差异蛋白具有对神经生长因子的刺激反应和细胞组织的调控等功能,主要参与了细胞的生物学过程;冷藏后期差异蛋白具有碳水化合物代谢过程和RNA代谢过程的调节等功能,主要参与了糖代谢途径。蛋白-蛋白互作网络分析表明,细胞分裂控制蛋白42同源物(CDC42)是两个冷藏阶段共有的关键节点蛋白,该蛋白与细胞的吞噬作用密切相关。上述结果揭示了冷藏过程中的蛋白质组成差异和功能的多样性,为原料乳的冷藏提供了理论依据,对原料乳的质量控制具有重要意义。
基金supported by the National Natural Science Foundation of China(No.52072099)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)the Team Program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)。
文摘Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.
基金financially supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_0099)。
文摘The complex permittivity of baijiu varies with frequency,and dielectric spectroscopy has been used to evaluate the quality.To simplify the analysis and reduce the number of the parameters,a dielectric relaxation model is often used to fit the permittivity data.However,existing fitting methods such as the least squares and particle swarm optimization methods are often computationally complex and require preset initial values.Therefore,a simpler calculation method of the relaxation parameters considering the geometric characteristics of the permittivity spectrum is proposed.It is based on the relationship between the Cole-Cole relaxation parameters and the Cole-Cole diagram,which is fitted by a geometric method.First,the concepts of the Cole-Cole parameters and the diagram are introduced,and then the process of obtaining the parameters from the complex permittivity measurement data is explained.Taking baijiu with 56%alcohol by volume(ABV)as an example,the fitting is better than the least squares method and similar to the particle swarm optimization.This method is then used for the parameter fitting of baijiu with ABV of 42-52%,and the average error is less than 1%,demonstrating its wider applicability.Finally,a prediction model is used for baijiu with 53%ABV,and the error is only 1.51%.Hence,the method can be applied to the measurement of ABV of baijiu.
文摘为探究原料乳在4℃冷藏过程中的脂质变化,从而指导乳及乳制品的后期加工,该研究采用超高效液相色谱-三重四级杆复合线性离子阱质谱技术分别对冷藏第0、2、3、4、6天的原料乳脂质进行绝对定性定量分析。结果表明,原料乳共检出20种脂质亚类、880种脂质分子,其中甘油三脂、磷脂酰乙醇胺、磷脂酰胆碱亚类含量最高;以P值<0.05,变量重要性投影(variable importance projection,VIP)>1为标准共筛选出420种显著性差异脂质代谢物,以P值<0.01,VIP>1为标准共筛选出98种极显著性差异脂质代谢物。整个冷藏过程中,极显著性差异脂质分子含量呈下降趋势,其中第3天与第4天对比组(D3 vs D4)脂质变化最为明显,冷藏3~4 d是原料乳脂质变化的关键阶段。对D3vs D4组的极显著差异脂质进行京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路分析,10种脂质分子被注释到6条代谢途径中,其中磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇、磷脂酰基丝氨酸被注释到甘油磷脂代谢及神经酰胺、鞘磷脂被注释到鞘脂代谢是该阶段的主要代谢途径。研究结果为探明原料乳冷藏过程中的脂质变化、划定脂肪水解的关键期提供理论依据,进而为后期乳制品的加工提供数据参考。
基金partially supported by grants from the National Natural Science Foundation of China (52072099, 52102228)Team program of the Natural Science Foundation of Heilongjiang Province, China (TD2021E005)+1 种基金The National general entrepreneurial practice program (202210231088S)The National general innovation training program (202210231076)。
文摘In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely used as an additive in electrolytes to build a high-quality SEI,but its self-sacrificial nature limits the ability to mitigate the shuttle effect and stabilize Li anode during long-term cycling.To counteract LiNO_(3) consumption during long-term cycling without using a high initial concentration,inspired by sustainedrelease drugs,we encapsulated LiNO_(3) in lithiated Nafion polymer and added an electrolyte co-solvent(1,1,2,2-tetrafluoroethylene 2,2,2-trifluoromethyl ether) with poor LiNO_(3) solubility to construct highquality and durable F-and N-rich SEI.Theoretical calculations,experiments,multiphysics simulations,and in-situ observations confirmed that the F-and N-rich SEI can modulate lithium deposition behavior and allow persistent repair of SEI during prolonged cycling.Hence,the F-and N-rich SEI improves the Li anode cycling CE to 99.63% and alleviates the shuttle effect during long-term cycling.The lithium anode with sustainable F-and N-rich SEI shows a stable Li plating/stripping over 2000 h at 1 mA cm^(-2).As expected,Li‖S full cells with this SEI achieved a long lifespan of 250 cycles,far exceeding cells with a routine SEI.The Li‖S pouch cell based on F-and N-rich SEI also can achieve a high energy density of about300 Wh kg^(-1) at initial cycles.This strategy provides a novel design for high-quality and durable SEls in LSBs and may also be extendable to other alkali metal batteries.
基金supported by National Natural Science Foundation of China (Nos. 12075037 and 22206013)the Natural Science Foundation of Jiangsu Province (No. BK20210857)the Leading Innovative Talents Cultivation Project of Changzhou City (No. CQ20210083)。
文摘Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD reactor(instead of a traditional metal electrode) for highly efficient ozone generation. The results demonstrated that a high O_(3) yield of 242 g k Wh^(-1) with a concentration of 14.6 g m^(-3)O_(3) was achieved. The power transmission mechanism works because NaCl aqueous solution behaves as a capacitor when an alternating pulse voltage below 8 k Hz is used.Compared with the resistance of the discharge barrier and discharge space, the resistance of NaCl aqueous solution can be ignored, which ensures that O_(3) is generated efficiently. It is expected that O_(3) generation using NaCl aqueous solution as a novel electrode in a DBD reactor could be an alternative technology with good application prospects.