A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale ...A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery.展开更多
Reconfigurable Intelligent Surface(RIS)assisted communication perception integration technology is an emerging communication technology that introduces reconfigurable intelligent surfaces in the communication environm...Reconfigurable Intelligent Surface(RIS)assisted communication perception integration technology is an emerging communication technology that introduces reconfigurable intelligent surfaces in the communication environment to achieve real-time perception and control of signals,thereby improving the performance and efficiency of communication systems.This article studies the integrated communication perception technology assisted by RIS,including system principles,key technologies,and performance analysis.Through literature review and analysis of relevant research,the potential application prospects of this technology in future communication systems have been revealed.展开更多
The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow...The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2021-117)PetroChina CCUS Major Science and Technology Project(2021ZZ01-03)。
文摘A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery.
文摘Reconfigurable Intelligent Surface(RIS)assisted communication perception integration technology is an emerging communication technology that introduces reconfigurable intelligent surfaces in the communication environment to achieve real-time perception and control of signals,thereby improving the performance and efficiency of communication systems.This article studies the integrated communication perception technology assisted by RIS,including system principles,key technologies,and performance analysis.Through literature review and analysis of relevant research,the potential application prospects of this technology in future communication systems have been revealed.
文摘The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed.