An optical black-hole cavity based on transformation optics enables Q-factor enhancement and strong field confinement,by eliminating the intrinsic radiation loss of the conventional whispering-gallery modes,holding po...An optical black-hole cavity based on transformation optics enables Q-factor enhancement and strong field confinement,by eliminating the intrinsic radiation loss of the conventional whispering-gallery modes,holding potential for applications in energy harvesting and optoelectronics.展开更多
Optical microcavities have become an attractive platform for precision measurement with merits of ultrahigh sensitivity,miniature footprint and fast response.Despite the achievements of ultrasensitive detection,optica...Optical microcavities have become an attractive platform for precision measurement with merits of ultrahigh sensitivity,miniature footprint and fast response.Despite the achievements of ultrasensitive detection,optical microcavities still face significant challenges in the measurement of biochemical and physical processes with complex dynamics,especially when multiple effects are present.Here we demonstrate operando monitoring of the transition dynamics of a phase-change material via a self-referencing optofluidic microcavity.We use a pair of cavity modes to precisely decouple the refractive index and temperature information of the analyte during the phase-transition process.Through real-time measurements,we reveal the detailed hysteresis behaviors of refractive index during the irreversible phase transitions between hydrophilic and hydrophobic states.We further extract the phase-transition threshold by analyzing the steady-state refractive index change at various power levels.Our technology could be further extended to other materials and provide great opportunities for exploring on-demand dynamic biochemical processes.展开更多
Spontaneous symmetry breaking has revolutionized the understanding in numerous fields of modern physics. Here, we theoretically demonstrate the spontaneous time-reversal symmetry breaking in a cavity quantum electrody...Spontaneous symmetry breaking has revolutionized the understanding in numerous fields of modern physics. Here, we theoretically demonstrate the spontaneous time-reversal symmetry breaking in a cavity quantum electrodynamics system in which an atomic ensemble interacts coherently with a single resonant cavity mode. The interacting system can be effectively described by two coupled oscillators with positive and negative mass, when the two-level atoms are prepared in their excited states. The occurrence of symmetry breaking is controlled by the atomic detuning and the coupling to the cavity mode,which naturally divides the parameter space into the symmetry broken and symmetry unbroken phases.The two phases are separated by a spectral singularity, a so-called exceptional point, where the eigenstates of the Hamiltonian coalesce. When encircling the singularity in the parameter space, the quasiadiabatic dynamics shows chiral mode switching which enables topological manipulation of quantum states.展开更多
Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attract...Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attracted great attention for integrated on-chip trapping and manipulation. However, optical trapping with high efficiency and low input power is still a big challenge in nanobeam cavities because most of the light energy is confined within the solid dielectric region. To this end, by incorporating a nanoslotted structure into an ultracompact one- dimensional photonic crystal nanobeam cavity structure, we design a promising on-chip device with ultralarge trapping potential depth to enhance the optical trapping characteristic of the cavity. In this work, we first provide a systematic analysis of the optical trapping force for an airborne polystyrene (PS) nanoparticle trapped in a cavity model. Then, to validate the theoretical analysis, the numerical simulation proof is demonstrated in detail by using the three-dimensional finite element method. For trapping a PS nanoparticle of 10 nm radius within the air-slot, a maximum trapping force as high as 8.28 nN/mW and a depth of trapping potential as large as 1.15 × 105 kBTmW-1 are obtained, where kB is the Boltzmann constant and T is the system temperature. We estimate a lateral trapping stiffness of 167.17 pN. nm-1 . mW-1 for a 10 nm radius PS nanoparticle along the cavity x-axis, more than two orders of magnitude higher than previously demonstrated on-chip, near field traps. Moreover, the threshold power for stable trapping as low as 0.087 μW is achieved. In addition, trapping of a single 25 nm radius PS nanoparticle causes a 0.6 nm redshift in peak wavelength. Thus, the proposed cavity device can be used to detect single nanoparticle trapping by monitoring the resonant peak wavelength shift. We believe that the architecture with features of an ultracompact footprint, high integrahility with optical waveguides/cir- cuits, and efficient trapping demonstrated here will provide a promising candidate for developing a lab-on-a-chip device with versatile functionalities.展开更多
A high-Q hybrid plasmonic-photonic microresonator,which consists of a dielectric microdisk hybridized with a plasmonic nanoantenna dimer,enables an enlarged local density of states of the optical field and chiral prop...A high-Q hybrid plasmonic-photonic microresonator,which consists of a dielectric microdisk hybridized with a plasmonic nanoantenna dimer,enables an enlarged local density of states of the optical field and chiral propagation of photons inside the cavity.展开更多
Chaotic dynamics in optical microcavities, governed dominantly by manifolds, is of great importance for both fundamental studies and photonic applications. Here, we report the experimental observation of a stable mani...Chaotic dynamics in optical microcavities, governed dominantly by manifolds, is of great importance for both fundamental studies and photonic applications. Here, we report the experimental observation of a stable manifold characterized by energy and momentum evolution in the nearly chaotic phase space of an asymmetric optical microcavity. By controlling the radius of a fiber coupler and the coupling azimuth of the cavity, corresponding to the momentum and position of the input light, the injected light can in principle excite the system from a desired position in phase space. It is found that once the input light approaches the stable manifold, the angular momentum of the light experiences a rapid increase, and the energy is confined in the cavity for a long time.Consequently, the distribution of the stable manifold is visualized by the output power and the coupling depth to high-Q modes extracted from the transmission spectra, which is consistent with theoretical predictions by the ray model. This work opens a new path to understand the chaotic dynamics and reconstruct the complex structure in phase space, providing a new paradigm of manipulating photons in wave chaos.展开更多
文摘An optical black-hole cavity based on transformation optics enables Q-factor enhancement and strong field confinement,by eliminating the intrinsic radiation loss of the conventional whispering-gallery modes,holding potential for applications in energy harvesting and optoelectronics.
基金supported by the National Key R&D Program of China(No.2018YFB2200401)the National Natural Science Foundation of China(Nos.11825402,11654003,12041602,11974058,and 62005231)+4 种基金supported by Beijing Nova Program(Z201100006820125)Beijing Municipal Science&Technology Commission(No.Z201100004020007)Fundamental Research Funds for the Central Universities(20720200074)supported by the National Postdoctoral Program for Innovative Talents(No.BX20200014)China Postdoctoral Science Foundation(No.2020M680185)。
文摘Optical microcavities have become an attractive platform for precision measurement with merits of ultrahigh sensitivity,miniature footprint and fast response.Despite the achievements of ultrasensitive detection,optical microcavities still face significant challenges in the measurement of biochemical and physical processes with complex dynamics,especially when multiple effects are present.Here we demonstrate operando monitoring of the transition dynamics of a phase-change material via a self-referencing optofluidic microcavity.We use a pair of cavity modes to precisely decouple the refractive index and temperature information of the analyte during the phase-transition process.Through real-time measurements,we reveal the detailed hysteresis behaviors of refractive index during the irreversible phase transitions between hydrophilic and hydrophobic states.We further extract the phase-transition threshold by analyzing the steady-state refractive index change at various power levels.Our technology could be further extended to other materials and provide great opportunities for exploring on-demand dynamic biochemical processes.
基金supported by the National Key R&D Program of China(2016YFA0301302)the National Natural Science Foundation of China(61435001,11654003,11474011)High-performance Computing Platform of Peking University
文摘Spontaneous symmetry breaking has revolutionized the understanding in numerous fields of modern physics. Here, we theoretically demonstrate the spontaneous time-reversal symmetry breaking in a cavity quantum electrodynamics system in which an atomic ensemble interacts coherently with a single resonant cavity mode. The interacting system can be effectively described by two coupled oscillators with positive and negative mass, when the two-level atoms are prepared in their excited states. The occurrence of symmetry breaking is controlled by the atomic detuning and the coupling to the cavity mode,which naturally divides the parameter space into the symmetry broken and symmetry unbroken phases.The two phases are separated by a spectral singularity, a so-called exceptional point, where the eigenstates of the Hamiltonian coalesce. When encircling the singularity in the parameter space, the quasiadiabatic dynamics shows chiral mode switching which enables topological manipulation of quantum states.
基金National Natural Science Foundation of China(NSFC)(61501053,61611540346,11474011,11654003,61435001,61471050,61622103)National Key R&D Program of China(2016YFA0301302)+1 种基金Fund of the State Key Laboratory of Information Photonics and Optical Communications(IPOC2017ZT05)Beijing University of Posts and Telecommunications,China
文摘Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attracted great attention for integrated on-chip trapping and manipulation. However, optical trapping with high efficiency and low input power is still a big challenge in nanobeam cavities because most of the light energy is confined within the solid dielectric region. To this end, by incorporating a nanoslotted structure into an ultracompact one- dimensional photonic crystal nanobeam cavity structure, we design a promising on-chip device with ultralarge trapping potential depth to enhance the optical trapping characteristic of the cavity. In this work, we first provide a systematic analysis of the optical trapping force for an airborne polystyrene (PS) nanoparticle trapped in a cavity model. Then, to validate the theoretical analysis, the numerical simulation proof is demonstrated in detail by using the three-dimensional finite element method. For trapping a PS nanoparticle of 10 nm radius within the air-slot, a maximum trapping force as high as 8.28 nN/mW and a depth of trapping potential as large as 1.15 × 105 kBTmW-1 are obtained, where kB is the Boltzmann constant and T is the system temperature. We estimate a lateral trapping stiffness of 167.17 pN. nm-1 . mW-1 for a 10 nm radius PS nanoparticle along the cavity x-axis, more than two orders of magnitude higher than previously demonstrated on-chip, near field traps. Moreover, the threshold power for stable trapping as low as 0.087 μW is achieved. In addition, trapping of a single 25 nm radius PS nanoparticle causes a 0.6 nm redshift in peak wavelength. Thus, the proposed cavity device can be used to detect single nanoparticle trapping by monitoring the resonant peak wavelength shift. We believe that the architecture with features of an ultracompact footprint, high integrahility with optical waveguides/cir- cuits, and efficient trapping demonstrated here will provide a promising candidate for developing a lab-on-a-chip device with versatile functionalities.
基金supported by National Natural Science Foundation of China(No.11825402,No.11654003,No.11974341,and No.11704375).
文摘A high-Q hybrid plasmonic-photonic microresonator,which consists of a dielectric microdisk hybridized with a plasmonic nanoantenna dimer,enables an enlarged local density of states of the optical field and chiral propagation of photons inside the cavity.
基金National Key Research and Development Program of China (2016YFA0301302, 2018YFB2200401)National Natural Science Foundation of China (11825402,11654003, 61435001, 11527901, 12041602)+2 种基金Key Research and Development Program of Guangdong Province(2018B030329001)National Postdoctoral Program for Innovative Talents (BX20200014)China Postdoctoral Science Foundation (2020M680185)。
文摘Chaotic dynamics in optical microcavities, governed dominantly by manifolds, is of great importance for both fundamental studies and photonic applications. Here, we report the experimental observation of a stable manifold characterized by energy and momentum evolution in the nearly chaotic phase space of an asymmetric optical microcavity. By controlling the radius of a fiber coupler and the coupling azimuth of the cavity, corresponding to the momentum and position of the input light, the injected light can in principle excite the system from a desired position in phase space. It is found that once the input light approaches the stable manifold, the angular momentum of the light experiences a rapid increase, and the energy is confined in the cavity for a long time.Consequently, the distribution of the stable manifold is visualized by the output power and the coupling depth to high-Q modes extracted from the transmission spectra, which is consistent with theoretical predictions by the ray model. This work opens a new path to understand the chaotic dynamics and reconstruct the complex structure in phase space, providing a new paradigm of manipulating photons in wave chaos.