Assume that 0<p<∞ and that B is a connected nonempty open set in R^(n),and that A^(p)(B)is the vector space of all holomorphic functions F in the tubular domains R^(n)+iB such that for any compact set K⊂B,‖ y...Assume that 0<p<∞ and that B is a connected nonempty open set in R^(n),and that A^(p)(B)is the vector space of all holomorphic functions F in the tubular domains R^(n)+iB such that for any compact set K⊂B,‖ y →‖x →F(x+iy)‖Lp(R^(n))‖ L(K)<∞,so A^(p)(B)is a Frechet space with the Heine-Borel property,its topology is induced by a complete invariant metric,is not locally bounded,and hence is not normal.Furthermore,if 1≤p≤2,then the element F of A^(p)(B)can be written as a Laplace transform of some function f∈L(R^(n)).展开更多
This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electr...This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electrode distance,electrolyte concentration,and ammonia concentration.The experimental results showed that the maximum power density of TRABs with a Cu electrode was 40.0 W·m^(2),which was considerably higher than that with Ni(0.34 W·m^(2))and Co(0.14 W·m^(2))electrodes.TRABs with an anion exchange membrane had a 28.6%higher maximum power density than those with a cation exchange membrane.An increased electrode surface resulted in an increased maximum power but a decreased maximum power density.Within a certain range,TRAB performance was enhanced with decreased electrode distance and increased electrolyte concentration.An increased ammonia concentration resulted in enhanced ammonia transfer and improved the TRAB performance.展开更多
A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering o...A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities.In a lensless GI experiment performed with spatial bandpass filtering,the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10.The resolution depends on the bandwidth of the filter,and the relationship between the two is investigated and discussed.In combination with compressed sensing programming,not only high resolution can be maintained but also image quality can be improved,while a much lower sampling number is sufficient.展开更多
The explosive growth of social media means portrait editing and retouching are in high demand.While portraits are commonly captured and stored as raster images,editing raster images is non-trivial and requires the use...The explosive growth of social media means portrait editing and retouching are in high demand.While portraits are commonly captured and stored as raster images,editing raster images is non-trivial and requires the user to be highly skilled.Aiming at developing intuitive and easy-to-use portrait editing tools,we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation.The base layer consists of a set of sparse diffusion curves(DCs)which characterize salient geometric features and low-frequency colors,providing a means for semantic color transfer and facial expression editing.The middle level encodes specular highlights and shadows as large,editable Poisson regions(PRs)and allows the user to directly adjust illumination by tuning the strength and changing the shapes of PRs.The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation.We train a deep generative model that can produce high-frequency residuals automatically.Thanks to the inherent meaning in vector primitives,editing portraits becomes easy and intuitive.In particular,our method supports color transfer,facial expression editing,highlight and shadow editing,and automatic retouching.To quantitatively evaluate the results,we extend the commonly used FLIP metric(which measures color and feature differences between two images)to consider illumination.The new metric,illumination-sensitive FLIP,can effectively capture salient changes in color transfer results,and is more consistent with human perception than FLIP and other quality measures for portrait images.We evaluate our method on the FFHQR dataset and show it to be effective for common portrait editing tasks,such as retouching,light editing,color transfer,and expression editing.展开更多
To the Editor:The shortage of deceased donor(DD)kidneys for transplantation remains a persistent concern.Despite the potential reversibility of acute kidney injury(AKI)lesions,kidneys from pediatric donors with AKI ar...To the Editor:The shortage of deceased donor(DD)kidneys for transplantation remains a persistent concern.Despite the potential reversibility of acute kidney injury(AKI)lesions,kidneys from pediatric donors with AKI are often underutilized,especially in the context of pediatric transplantation.By implementing single kidney transplantation(SKT)from pediatric donors to pediatric recipients(PTP),we can optimize the utilization of available kidneys and increase the number of pediatric recipients.展开更多
Thermally regenerative batteries(TRBs) are promising for harvesting low-grade waste heat into electrical power. However, the ammonia crossover from anode to cathode causes self-discharge and then leads to the decay of...Thermally regenerative batteries(TRBs) are promising for harvesting low-grade waste heat into electrical power. However, the ammonia crossover from anode to cathode causes self-discharge and then leads to the decay of capacity. To alleviate the ammonia crossover and improve electricity generation, a stable graphene oxide(GO) modified anion exchange membrane(AEM) was proposed. Compared with the original AEM, the GO modified AEM with a 39.5% lower ammonia permeability induces a 24.3% higher maximal power output and 20.2% higher energy density in TRBs. Together with the visualization result,it was demonstrated the ammonia crossover was effectively alleviated by GO modifying the AEM not at a cost of the reduced battery performance, indicating the promising application in future TRBs.展开更多
A piezoelectric driving method for rover vehicles is proposed in this paper. Employing this method, a tracked vehicle driven by friction forces from a frame mounted with piezoelectric elements was developed. The vehic...A piezoelectric driving method for rover vehicles is proposed in this paper. Employing this method, a tracked vehicle driven by friction forces from a frame mounted with piezoelectric elements was developed. The vehicle is designed with no driver sprocket, no idler-wheel and no supporting bogie wheels, and the vehicle thus requires no lubrication and has potential application in planetary exploration. The frame consists of a pair of piezoelectric transducers. Each transducer comprises four annular parts jointed by beams adhered with piezoelectric ceramics. The tracks are set to the outer surface of the annular parts by means of track tension. Traveling rotating waves are generated by piezoelectric transducers in the annular parts, which generate microscopic elliptical motions at the interface of the tracks. The microscopic elliptical motions from the piezoelectric transducers drive the track vehicle to move. Finite elements analysis was carried out to verify the operation principle using commercial software ANSYS. Piezoelectric transducers were fabricated, assembled and tested to validate the concepts of the proposed rover vehicle and confirm the simulation results. A prototype vehicle with mass of 0.57 kg moves at a speed of 4.3 mm/s at a driving voltage of 250 V and operating frequency of 65.53 kHz.展开更多
Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigat...Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 /0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P - 0.001 ; 3.25 [2.67, 3.56] vs. 1.65 [ 1.18, 1.72] m/s, 281.3 [ 184.3,364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P - 0.001 ) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001 ; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic factors except low WSS at stent regions.展开更多
Bardet-Biedl syndrome(BBS) is a genetically heterogeneous disorder characterized by retinal dystrophy, polydactyly, obesity,developmental delay, and renal defects. At least 21 candidate BBS-associated genes(BBS1-19, N...Bardet-Biedl syndrome(BBS) is a genetically heterogeneous disorder characterized by retinal dystrophy, polydactyly, obesity,developmental delay, and renal defects. At least 21 candidate BBS-associated genes(BBS1-19, NPHP1, and IFT172) have previously been identified, and all of them play important roles in ciliary function. Here, we collected a BBS pedigree with four members and performed whole-exome sequencing on the proband. The variants were analyzed and evaluated to confirm their pathogenicity. We found compound heterozygous variants(c.1192C>T, p.Q398* and c.1175C>T, p.T392M) in MKKS in both the siblings, and these were likely to be pathogenic variants. We also found a missense variant(c.2029G>C, p.E677Q) in NPHP1 and a missense variant(c.2470C>T, p.R824C) in BBS9 in the proband only, which are variants of uncertain significance. The compound heterozygous variants were probably responsible for the BBS phenotype in this Chinese pedigree and the missense mutations in NPHP1 and BBS9 might contribute to the mutation load.展开更多
The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic ba...The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic bacteria cells for hydrogen production. The quartet structure generation set (QSGS) is used to generate porous structure of the immobilized granule. The effects of porosity of the immobilized granule on flow and concentration fields as well as the hydrogen production performance are investi- gated. Higher porosity facilitates the substrate solution smoothly flowing through the porous granule with increasing velocity, and thus results in higher product concentration inside the immobilized gran- ule. Additionally, the substrate consumption efficiency increases, while hydrogen yield slightly decreases with increasing porosity, and they tend to stable for the porosity larger than 0.5. Furthermore, the LB numerical results have a good agreement with the experimental results. It is demonstrated that the pore-scale LB simulation method coupling with QSGS is available to simulate the photo hydrogen produc- tion in the hioreactor with porous immobilized granules.展开更多
Estimation of the viscosity of microalgae slurry is the premise for the design of industrial reactors in microalgal biofuel production.To accurately predict the viscosity of microalgae slurry(Chlorella pyrenoidosa),an...Estimation of the viscosity of microalgae slurry is the premise for the design of industrial reactors in microalgal biofuel production.To accurately predict the viscosity of microalgae slurry(Chlorella pyrenoidosa),an artificial neural network(ANN)model is designed in this study.In the ANN model,the mass fraction of microalgal cell,shear rate,temperature,and retention time during the hydrothermal hydrolysis process are used as the input variables,and the viscosity of microalgae slurry is obtained as the output variable.Comparisons show that the ANN model is in excellent agreement with the experimental data.The mean square error(MSE),Mean Absolute Error(MAE),and goodness of fit(R 2)are 0.725,0.484 and 0.991,respectively.The results provide a proof-of-concept for using ANN models to estimate the viscosity of microalgae slurry.In particular,the developed ANN model can accurately predict the viscosity of microalgae slurry in a hydrothermal hydrolysis process,which cannot be accurately predicted by a standard curve fitting method.展开更多
基金This work was partially supported by NSFC(11971045,12071035 and 11971063).
文摘Assume that 0<p<∞ and that B is a connected nonempty open set in R^(n),and that A^(p)(B)is the vector space of all holomorphic functions F in the tubular domains R^(n)+iB such that for any compact set K⊂B,‖ y →‖x →F(x+iy)‖Lp(R^(n))‖ L(K)<∞,so A^(p)(B)is a Frechet space with the Heine-Borel property,its topology is induced by a complete invariant metric,is not locally bounded,and hence is not normal.Furthermore,if 1≤p≤2,then the element F of A^(p)(B)can be written as a Laplace transform of some function f∈L(R^(n)).
基金the National Natural Science Foundation of China(No.51976018)the National Natural Science Foundation for Young Scientists of China(No.51606022)+3 种基金Natural Science Foundation of Chongqing,China(No.cstc2017jcyjAX0203)Scientific Research Foundation for Returned Overseas Chinese Scholars of Chongqing,China(No.cx2017020)the Fundamental Research Funds for the Central Universities(No.106112016CDJXY145504)Research Funds of Key Laboratory of Low-grade Energy Utilization Technologies and Systems(No.LLEUTS-2018005).
文摘This study investigated the important factors that affect the operating parameters of thermally regenerative ammoniabased batteries(TRABs),including the metal electrode type,membrane type,electrode surface area,electrode distance,electrolyte concentration,and ammonia concentration.The experimental results showed that the maximum power density of TRABs with a Cu electrode was 40.0 W·m^(2),which was considerably higher than that with Ni(0.34 W·m^(2))and Co(0.14 W·m^(2))electrodes.TRABs with an anion exchange membrane had a 28.6%higher maximum power density than those with a cation exchange membrane.An increased electrode surface resulted in an increased maximum power but a decreased maximum power density.Within a certain range,TRAB performance was enhanced with decreased electrode distance and increased electrolyte concentration.An increased ammonia concentration resulted in enhanced ammonia transfer and improved the TRAB performance.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFB0504302 and 2017YFB0503301)Defense Industrial Technology Development Program(Grant No.D040301-1)。
文摘A filtered ghost imaging(GI)protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system;a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities.In a lensless GI experiment performed with spatial bandpass filtering,the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10.The resolution depends on the bandwidth of the filter,and the relationship between the two is investigated and discussed.In combination with compressed sensing programming,not only high resolution can be maintained but also image quality can be improved,while a much lower sampling number is sufficient.
基金This project was supported by the Ministry of Education,Singapore,under its Academic Research Fund Tier 1(RG20/20)the National Natural Science Foundation of China(61872347)the Special Plan for the Development of Distinguished Young Scientists of ISCAS(Y8RC535018).
文摘The explosive growth of social media means portrait editing and retouching are in high demand.While portraits are commonly captured and stored as raster images,editing raster images is non-trivial and requires the user to be highly skilled.Aiming at developing intuitive and easy-to-use portrait editing tools,we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation.The base layer consists of a set of sparse diffusion curves(DCs)which characterize salient geometric features and low-frequency colors,providing a means for semantic color transfer and facial expression editing.The middle level encodes specular highlights and shadows as large,editable Poisson regions(PRs)and allows the user to directly adjust illumination by tuning the strength and changing the shapes of PRs.The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation.We train a deep generative model that can produce high-frequency residuals automatically.Thanks to the inherent meaning in vector primitives,editing portraits becomes easy and intuitive.In particular,our method supports color transfer,facial expression editing,highlight and shadow editing,and automatic retouching.To quantitatively evaluate the results,we extend the commonly used FLIP metric(which measures color and feature differences between two images)to consider illumination.The new metric,illumination-sensitive FLIP,can effectively capture salient changes in color transfer results,and is more consistent with human perception than FLIP and other quality measures for portrait images.We evaluate our method on the FFHQR dataset and show it to be effective for common portrait editing tasks,such as retouching,light editing,color transfer,and expression editing.
基金supported by funding from the National Natural Science Foundation of China(Nos.81870511,82170770,and 82200848)Natural Science Foundation of Guangdong Province(No.2023A1515010139)+6 种基金Science and Technology Planning Project of Guangzhou City(No.202201011318)Key Clinical Technique of Guangzhou(No.2023P-ZD15)Elite Talent Project of Guangdong Province(No.R09002)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010884)Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology(No.2020B1212060026)Guangdong Provincial International Cooperation Base of Science and Technology(No.2020A0505020003)Science Research Cultivation Program of Stomatological Hospital,Southern Medical University(No.PY2021026)
文摘To the Editor:The shortage of deceased donor(DD)kidneys for transplantation remains a persistent concern.Despite the potential reversibility of acute kidney injury(AKI)lesions,kidneys from pediatric donors with AKI are often underutilized,especially in the context of pediatric transplantation.By implementing single kidney transplantation(SKT)from pediatric donors to pediatric recipients(PTP),we can optimize the utilization of available kidneys and increase the number of pediatric recipients.
基金supported by Innovative Research Group Project of National Natural Science Foundation of China (No. 52021004)National Natural Science Foundation of China (No. 51976018)+1 种基金Scientific Research Foundation for Returned Overseas Chinese Scholars of Chongqing, China (No. cx2021088)Research Funds of Key Laboratory of Low-grade Energy Utilization Technologies and Systems (No. LLEUTS-2018005)。
文摘Thermally regenerative batteries(TRBs) are promising for harvesting low-grade waste heat into electrical power. However, the ammonia crossover from anode to cathode causes self-discharge and then leads to the decay of capacity. To alleviate the ammonia crossover and improve electricity generation, a stable graphene oxide(GO) modified anion exchange membrane(AEM) was proposed. Compared with the original AEM, the GO modified AEM with a 39.5% lower ammonia permeability induces a 24.3% higher maximal power output and 20.2% higher energy density in TRBs. Together with the visualization result,it was demonstrated the ammonia crossover was effectively alleviated by GO modifying the AEM not at a cost of the reduced battery performance, indicating the promising application in future TRBs.
基金supported by the National Natural Science Foundation of China (5117702, 91023020)NFSC Guangdong Joint Fund (U0934004)Program for New Century Excellent Talents in University (NCET-10-0070)
文摘A piezoelectric driving method for rover vehicles is proposed in this paper. Employing this method, a tracked vehicle driven by friction forces from a frame mounted with piezoelectric elements was developed. The vehicle is designed with no driver sprocket, no idler-wheel and no supporting bogie wheels, and the vehicle thus requires no lubrication and has potential application in planetary exploration. The frame consists of a pair of piezoelectric transducers. Each transducer comprises four annular parts jointed by beams adhered with piezoelectric ceramics. The tracks are set to the outer surface of the annular parts by means of track tension. Traveling rotating waves are generated by piezoelectric transducers in the annular parts, which generate microscopic elliptical motions at the interface of the tracks. The microscopic elliptical motions from the piezoelectric transducers drive the track vehicle to move. Finite elements analysis was carried out to verify the operation principle using commercial software ANSYS. Piezoelectric transducers were fabricated, assembled and tested to validate the concepts of the proposed rover vehicle and confirm the simulation results. A prototype vehicle with mass of 0.57 kg moves at a speed of 4.3 mm/s at a driving voltage of 250 V and operating frequency of 65.53 kHz.
文摘Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 /0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P - 0.001 ; 3.25 [2.67, 3.56] vs. 1.65 [ 1.18, 1.72] m/s, 281.3 [ 184.3,364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P - 0.001 ) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001 ; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic factors except low WSS at stent regions.
文摘Bardet-Biedl syndrome(BBS) is a genetically heterogeneous disorder characterized by retinal dystrophy, polydactyly, obesity,developmental delay, and renal defects. At least 21 candidate BBS-associated genes(BBS1-19, NPHP1, and IFT172) have previously been identified, and all of them play important roles in ciliary function. Here, we collected a BBS pedigree with four members and performed whole-exome sequencing on the proband. The variants were analyzed and evaluated to confirm their pathogenicity. We found compound heterozygous variants(c.1192C>T, p.Q398* and c.1175C>T, p.T392M) in MKKS in both the siblings, and these were likely to be pathogenic variants. We also found a missense variant(c.2029G>C, p.E677Q) in NPHP1 and a missense variant(c.2470C>T, p.R824C) in BBS9 in the proband only, which are variants of uncertain significance. The compound heterozygous variants were probably responsible for the BBS phenotype in this Chinese pedigree and the missense mutations in NPHP1 and BBS9 might contribute to the mutation load.
基金financial support provided by the State Key Program of National Natural Science of China (51136007)National Natural Science Funds for Distinguished Young Scholars (50825602)
文摘The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic bacteria cells for hydrogen production. The quartet structure generation set (QSGS) is used to generate porous structure of the immobilized granule. The effects of porosity of the immobilized granule on flow and concentration fields as well as the hydrogen production performance are investi- gated. Higher porosity facilitates the substrate solution smoothly flowing through the porous granule with increasing velocity, and thus results in higher product concentration inside the immobilized gran- ule. Additionally, the substrate consumption efficiency increases, while hydrogen yield slightly decreases with increasing porosity, and they tend to stable for the porosity larger than 0.5. Furthermore, the LB numerical results have a good agreement with the experimental results. It is demonstrated that the pore-scale LB simulation method coupling with QSGS is available to simulate the photo hydrogen produc- tion in the hioreactor with porous immobilized granules.
基金This work was supported by the State Key Program of National Nat-ural Science of China(No.51836001)National Natural Science Foun-dation of China(No.51776025).
文摘Estimation of the viscosity of microalgae slurry is the premise for the design of industrial reactors in microalgal biofuel production.To accurately predict the viscosity of microalgae slurry(Chlorella pyrenoidosa),an artificial neural network(ANN)model is designed in this study.In the ANN model,the mass fraction of microalgal cell,shear rate,temperature,and retention time during the hydrothermal hydrolysis process are used as the input variables,and the viscosity of microalgae slurry is obtained as the output variable.Comparisons show that the ANN model is in excellent agreement with the experimental data.The mean square error(MSE),Mean Absolute Error(MAE),and goodness of fit(R 2)are 0.725,0.484 and 0.991,respectively.The results provide a proof-of-concept for using ANN models to estimate the viscosity of microalgae slurry.In particular,the developed ANN model can accurately predict the viscosity of microalgae slurry in a hydrothermal hydrolysis process,which cannot be accurately predicted by a standard curve fitting method.