Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathic disorder. CMT is clinically and genetically heterogeneous. To date, 27 genes associated with the disease have been cloned. The pr...Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathic disorder. CMT is clinically and genetically heterogeneous. To date, 27 genes associated with the disease have been cloned. The present study carried out clinical classification according to clinical, electrophysiological and pathological features, conducted inheritance classification according to inheritance patterns, and performed mutation analysis of 13 CMT disease genes (PMP22, CX32, HSPB1, MNF2, MPZ, HSPB8, GDAP1, NFL, EGR2, SIMPLE, RAB7, LMNA, MTMR2) in 57 Chinese probands with CMT. Five cases of AD-CMT1 and 13 cases of sporadic CMT1 were diagnosed as CMT1A; five cases of X-CMT1, one case of X-CMT2 and one case of sporadic CMT1 were diagnosed as CMTXl; four cases of AD-CMT2 were diagnosed as CMT2F; one case of AD-CMT2 and one case of sporadic CMT2 were diagnosed as CMT2A2; one case of AD-CMT2 was diagnosed as CMT2L; one case of AD-CMT2 was diagnosed as CMT2J; one case of AR-CMT1 was diagnosed as CMT4A. Among the 57 CMT probands, seven genotypes were determined among 34 patients, with a detection rate of 59.6%. The results indicated that the clinical classification and inheritance classification are indispensable for selecting potential disease genes for mutation detection, and for efficient molecular diagnosis.展开更多
We previously found that the K141N mutation in heat shock protein B8 (HSPB8) was responsible for Charcot-Marie-Tooth disease type 2L in a large Chinese family. The objective of the present study was to generate a tr...We previously found that the K141N mutation in heat shock protein B8 (HSPB8) was responsible for Charcot-Marie-Tooth disease type 2L in a large Chinese family. The objective of the present study was to generate a transgenic mouse model bearing the K141N mutation in the human HSPB8 gene, and to determine whether this K141NHSPB8 transgenic mouse model would manifest the clinical phenotype of Charcot-Marie-Tooth disease type 2L, and consequently be suitable for use in studies of disease pathogenesis. Transgenic mice overexpressing K141N HSPB8 were generated using K141N mutant HSPB8 cDNA cloned into a pCAGGS plasmid driven by a human cytomegalovirus expression system. PCR and western blot analysis confirmed integration of the KI41NHSPB8 gene and widespread expression in tissues of the transgenic mice. The K141N HSPB8 transgenic mice exhibited decreased muscle strength in the hind limbs and impaired motor coordination, but no obvious sensory disturbance at 6 months of age by behavioral assessment. Electrophysiological analysis showed that the compound motor action potential amplitude in the sciatic nerve was significantly decreased, but motor nerve conduction velocity remained normal at 6 months of age. Pathological analysis of the sciatic nerve showed reduced myelinated fiber density, notable axonal edema and vacuolar degeneration in K141N HSPB8 transgenic mice, suggesting axonal involvement in the peripheral nerve damage in these animals. These findings indicate that the KI4mHSPB8 transgenic mouse successfully models Charcot-Marie-Tooth disease type 2L and can be used to study the pathogenesis of the disease.展开更多
Understanding bacterial adsorption and the evolution of biofilms on arsenopyrite with different surface structures is of great signific-ance to clarifying the mechanism of microbe-mineral interfacial interactions and ...Understanding bacterial adsorption and the evolution of biofilms on arsenopyrite with different surface structures is of great signific-ance to clarifying the mechanism of microbe-mineral interfacial interactions and the production of acidic mine drainage impacting the environ-ment.In this study,the attachment of Sulfobacillus thermosulfidooxidans cells and subsequent biofilm formation on arsenopyrite with different surface structures in the presence of dissolved As(Ⅲ)was studied.Arsenopyrite slices with a specific surface were obtained by electrochemic-al corrosion at 0.26 V.The scanning electronic microscopy-energy dispersion spectra analyses indicated that the arsenopyrite surface deficient in sulfur and iron obtained by electrochemical treatment was not favorable for the initial adsorption of bacteria,and the addition of As(Ⅲ)in-hibited the adsorption of microbial cells.Epifluorescence microscopy showed that the number of cells attaching to the arsenopyrite surface in-creased with time;however,biofilm formation was delayed significantly when As(Ⅲ)was added.展开更多
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive, currently untreatable and ultimately fatal ataxic disorder that belongs to the group of neurological disorders known as CAG-repeat or...Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive, currently untreatable and ultimately fatal ataxic disorder that belongs to the group of neurological disorders known as CAG-repeat or polyglutamine diseases. Here, we present the first prenatal diagnosis of SCA3/MJD in China's Mainland in a woman who was known to carry an expanded CAG-trinucleotide repeat in the MJD1 gene. After evaluating motivation and psychological tolerance of the couple, amniocentesis was performed after 14 weeks of gestation. Polymerase chain reactions followed by T-vector cloning and direct sequencing were employed to evaluate the CAG-repeat number of the fetal MJD1 gene. We identified a truncated CAG expansion of 78 repeats in the MJD1 gene of the fetus compared with 81 repeats in his mother.展开更多
Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently be...Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly short gastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.展开更多
Parkinson disease(PD) is a progressive neurodegenerative movement disorder. Both environmental and genetic factors play important roles in PD etiology. A number of environmental toxins cause parkinsonism in human an...Parkinson disease(PD) is a progressive neurodegenerative movement disorder. Both environmental and genetic factors play important roles in PD etiology. A number of environmental toxins cause parkinsonism in human and animal models. Genetic studies of rare early onset familial PD cases resulted in identification of disease-linked mutations in multiple genes. Nevertheless, the potential interaction between environment and genetics in PD pathogenesis remains largely unknown. We hypothesized that environmental factors induce abnormal epigenetic regulation that is involved in the pathogenesis of both familial and sporadic PD. We determined the global methylation status of 80,000e110,000 Cp G sites in each of the five sporadic PD patient brains and five age and postmodern interval matched control brains utilizing bisulfite padlock sequencing. Multiple genes involved in neurogenesis, particularly the ones in the Wnt signaling pathway, were hypermethylated in PD brains compared to their matched control brains. Consistent with the DNA methylation changes, marked reduction of protein expression was observed for four Wnt and neurogenesis related genes(FOXC1, NEURG2, SPRY1, and CTNNB1) in midbrain dopaminergic(DA) neurons of PD. The treatment of low concentration of 1-methyl-4-phenylpyridinium(MPPt) for cells resulted in downregulation of Wnt related genes. The study revealed an important link between the epigenetic disregulation of Wnt signaling and the pathogenesis and progression of PD.展开更多
Hearing impairment(HI)affects 1/1000 children and over 2%of the aged population.We have previously reported that mutations in the gene encoding gap junction protein connexin-31(Cx31)are associated with HI.The patholog...Hearing impairment(HI)affects 1/1000 children and over 2%of the aged population.We have previously reported that mutations in the gene encoding gap junction protein connexin-31(Cx31)are associated with HI.The pathological mechanism of the disease mutations remains unknown.Here,we show that expression of Cx31 in the mouse inner ear is developmentally regulated with a high level in adult inner hair cells and spiral ganglion neurons that are critical for the hearing process.In transfected cells,wild type Cx31 protein(Cx31wt)forms functional gap junction at cell-cell-contacts.In contrast,two HIassociated Cx31 mutants,Cx31R180X and Cx31E183K resided primarily in the ER and Golgi-like intracellular punctate structures,respectively,and failed to mediate lucifer yellow transfer.Expression of Cx31 mutants but not Cx31wt leads to upregulation of and increased association with the ER chaperone BiP indicating ER stress induction.Together,the HI-associated Cx31 mutants are impaired in trafficking,promote ER stress,and hence lose the ability to assemble functional gap junctions.The study reveals a potential pathological mechanism of HI-associated Cx31 mutations.展开更多
By homologous expressed sequence tag (EST) searching, one EST (GenBank: W29095) was obtained, which shows 75% identity in 435 bp overlap with the coding sequence of mouse Cacng2 gene. A 1 545 bp cDNA fragment was obta...By homologous expressed sequence tag (EST) searching, one EST (GenBank: W29095) was obtained, which shows 75% identity in 435 bp overlap with the coding sequence of mouse Cacng2 gene. A 1 545 bp cDNA fragment was obtained from the nested polymerase chain reaction (PCR) and rapid applification of cDNA end (RACE) reaction in the human brain prefrontal cortex cDNA library and the human brain Ready cDNA with the primers designed on W29095. The fragment contained a 948-bp open reading frame (ORF) encoding 315 amino acids, and was named CACNG3. As it was identical to a BAC clone (GenBank: AC004125) from chromosome 16p12-p13.1, the CACNG3 gene was mapped to human chromosome 16p12-p13.1, and the coding region was composed of 4 exons. Reverse transcription PCR (RT-PCR) analysis showed that the CACNG3 gene expressed in human adult brain and fetal brain. Single strand comformation polymorphism (SSCP) analysis was performed in 3 pedigrees with autosomal recessive retinitis pigmentosa, 8 pedigrees with autosomal展开更多
The outbreak of coronavirus disease 2019(COVID-19) caused by SARS-CoV-2 has created a global health crisis. SARS-CoV-2 infects varieties of tissues where the known receptor ACE2 is low or almost absent, suggesting the...The outbreak of coronavirus disease 2019(COVID-19) caused by SARS-CoV-2 has created a global health crisis. SARS-CoV-2 infects varieties of tissues where the known receptor ACE2 is low or almost absent, suggesting the existence of alternative viral entry pathways. Here, we performed a genome-wide barcoded-CRISPRa screen to identify novel host factors that enable SARS-CoV-2 infection. Beyond known host proteins, i.e., ACE2, TMPRSS2, and NRP1, we identified multiple host components,among which LDLRAD3, TMEM30A, and CLEC4G were confirmed as functional receptors for SARS-CoV-2. All these membrane proteins bind directly to spike’s N-terminal domain(NTD). Their essential and physiological roles have been confirmed in either neuron or liver cells. In particular, LDLRAD3 and CLEC4G mediate SARS-CoV-2 entry and infection in an ACE2-independent fashion. The identification of the novel receptors and entry mechanisms could advance our understanding of the multiorgan tropism of SARS-CoV-2, and may shed light on the development of COVID-19 countermeasures.展开更多
When people try to decide to buy or not to, they are often influenced by both their inherentopinions and the social marketing activities e.g. advertising, social news with strong point of view.Then people will make th...When people try to decide to buy or not to, they are often influenced by both their inherentopinions and the social marketing activities e.g. advertising, social news with strong point of view.Then people will make their final choice, or even convince other people to buy. After all, this is thebrand acceptance formation process. Factually, the dynamics of brand acceptance is essentially aninterwoven dynamics of endogenous opinion dynamics disturbed by an information diffusion process.To have a better understanding of the dynamics of brand acceptance, we propose and analyze a coupledagent-based dynamic model that combines the Majority-Rule-based Voter model in opinion dynamicswith the SI Model for information spreading to analyze the dynamics of brand acceptance in socialmedia. We focus on two important parameters in diffusion dynamics: the decayed transmission rate (fl)and the diffusion frequency (f). When the system is stable, the order parameter of the system is theduration time (r). In the absence of opinion interaction, the simulation results indicate that, when abrand tries to occupy a larger market share through social marketing approaches, it is always effectiveto let the opponent to be the propaganda target. While with the Majority-Rule-based Voter Modelincluded, we observe that the opinion interaction could have a dual function, which shows that a brandholding a small market share in the first place needs to adopt diverse marketing approaches accordingto different marketing environment types.展开更多
基金the National Natural Science Foundation of China, No. 81071001, 30600200the Natural Science Foundation of Hu-nan Province, No. 2006JJ30009
文摘Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathic disorder. CMT is clinically and genetically heterogeneous. To date, 27 genes associated with the disease have been cloned. The present study carried out clinical classification according to clinical, electrophysiological and pathological features, conducted inheritance classification according to inheritance patterns, and performed mutation analysis of 13 CMT disease genes (PMP22, CX32, HSPB1, MNF2, MPZ, HSPB8, GDAP1, NFL, EGR2, SIMPLE, RAB7, LMNA, MTMR2) in 57 Chinese probands with CMT. Five cases of AD-CMT1 and 13 cases of sporadic CMT1 were diagnosed as CMT1A; five cases of X-CMT1, one case of X-CMT2 and one case of sporadic CMT1 were diagnosed as CMTXl; four cases of AD-CMT2 were diagnosed as CMT2F; one case of AD-CMT2 and one case of sporadic CMT2 were diagnosed as CMT2A2; one case of AD-CMT2 was diagnosed as CMT2L; one case of AD-CMT2 was diagnosed as CMT2J; one case of AR-CMT1 was diagnosed as CMT4A. Among the 57 CMT probands, seven genotypes were determined among 34 patients, with a detection rate of 59.6%. The results indicated that the clinical classification and inheritance classification are indispensable for selecting potential disease genes for mutation detection, and for efficient molecular diagnosis.
基金funded by the National Natural Science Foundation of China,No.81071001,30900805
文摘We previously found that the K141N mutation in heat shock protein B8 (HSPB8) was responsible for Charcot-Marie-Tooth disease type 2L in a large Chinese family. The objective of the present study was to generate a transgenic mouse model bearing the K141N mutation in the human HSPB8 gene, and to determine whether this K141NHSPB8 transgenic mouse model would manifest the clinical phenotype of Charcot-Marie-Tooth disease type 2L, and consequently be suitable for use in studies of disease pathogenesis. Transgenic mice overexpressing K141N HSPB8 were generated using K141N mutant HSPB8 cDNA cloned into a pCAGGS plasmid driven by a human cytomegalovirus expression system. PCR and western blot analysis confirmed integration of the KI41NHSPB8 gene and widespread expression in tissues of the transgenic mice. The K141N HSPB8 transgenic mice exhibited decreased muscle strength in the hind limbs and impaired motor coordination, but no obvious sensory disturbance at 6 months of age by behavioral assessment. Electrophysiological analysis showed that the compound motor action potential amplitude in the sciatic nerve was significantly decreased, but motor nerve conduction velocity remained normal at 6 months of age. Pathological analysis of the sciatic nerve showed reduced myelinated fiber density, notable axonal edema and vacuolar degeneration in K141N HSPB8 transgenic mice, suggesting axonal involvement in the peripheral nerve damage in these animals. These findings indicate that the KI4mHSPB8 transgenic mouse successfully models Charcot-Marie-Tooth disease type 2L and can be used to study the pathogenesis of the disease.
基金This work was financially supported by National Natural Science Foundation of China(Nos.51774342,41802038,U1608254,51861135305,and 41830318)Beijing Syn-chrotron Radiation Facility Public User Program(2018-BEPC-PT-002240).
文摘Understanding bacterial adsorption and the evolution of biofilms on arsenopyrite with different surface structures is of great signific-ance to clarifying the mechanism of microbe-mineral interfacial interactions and the production of acidic mine drainage impacting the environ-ment.In this study,the attachment of Sulfobacillus thermosulfidooxidans cells and subsequent biofilm formation on arsenopyrite with different surface structures in the presence of dissolved As(Ⅲ)was studied.Arsenopyrite slices with a specific surface were obtained by electrochemic-al corrosion at 0.26 V.The scanning electronic microscopy-energy dispersion spectra analyses indicated that the arsenopyrite surface deficient in sulfur and iron obtained by electrochemical treatment was not favorable for the initial adsorption of bacteria,and the addition of As(Ⅲ)in-hibited the adsorption of microbial cells.Epifluorescence microscopy showed that the number of cells attaching to the arsenopyrite surface in-creased with time;however,biofilm formation was delayed significantly when As(Ⅲ)was added.
基金grants from the National Science and Technology Pillar Program in the Eleventh Five-year Plan Period, No. 2006BAI05A07the Major State Basic Research Development Program of China (973 Program), No. 2006cb500700+5 种基金the National Key Technologies Research and Development Program of China, No. 2004BA720A03the National Natural Science Foundation of China, No. 30871354, 30710303061 and 30470619the Key Project in the Natural Science Foundation of Hunan Province, No. 08JJ3048the Natural Science Foundation of Hunan Province, No. 11JJ5071the Science and Technology Planning Project of Hunan Province, No. 2009SK3172the Graduate Degree Thesis Innovation Foundation of Central South University, No. 2008yb030
文摘Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive, currently untreatable and ultimately fatal ataxic disorder that belongs to the group of neurological disorders known as CAG-repeat or polyglutamine diseases. Here, we present the first prenatal diagnosis of SCA3/MJD in China's Mainland in a woman who was known to carry an expanded CAG-trinucleotide repeat in the MJD1 gene. After evaluating motivation and psychological tolerance of the couple, amniocentesis was performed after 14 weeks of gestation. Polymerase chain reactions followed by T-vector cloning and direct sequencing were employed to evaluate the CAG-repeat number of the fetal MJD1 gene. We identified a truncated CAG expansion of 78 repeats in the MJD1 gene of the fetus compared with 81 repeats in his mother.
基金This project has been supported by the National Natural Science Foundation of China(grants 91853108,92153301,31771589,and 32170821 to K.Y,32101034 to F.C)Department of Science and Technology of Hunan Province(grants 2017RS3013,2017XK2011,2018DK2015,2019SK1012,and 2021JJ10054 to K.Y,and the innovative team program 2019RS1010)+2 种基金Central South University(2018CX032 to K.Y,2019zzts046 to Y.Z,2019zzts339 to X.L,2021zzts497 to H.Y,and the innovation-driven team project 2020CX016)D.M.F.v.A.is supported by Wellcome Trust Investigator Award(110061)a Novo Nordisk Foundation Laureate award(NNF21OC0065969).
文摘Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly short gastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.
基金Project supported by the National Natural Science Foundation of China(No.41672284)the Science Technology Planning Project of Zhejiang Province(No.2015C03021),China
基金supported by grants from the National Natural Science Foundation of China (Nos. 313300257, 81429002 and 81161120498 to Z.Z.)the National Basic Research Program of China (No. 2011CB51000 to ZZ)"111 Program" of Foreign Expert Bureau of China (No. B10036 to Z.Z.)
文摘Parkinson disease(PD) is a progressive neurodegenerative movement disorder. Both environmental and genetic factors play important roles in PD etiology. A number of environmental toxins cause parkinsonism in human and animal models. Genetic studies of rare early onset familial PD cases resulted in identification of disease-linked mutations in multiple genes. Nevertheless, the potential interaction between environment and genetics in PD pathogenesis remains largely unknown. We hypothesized that environmental factors induce abnormal epigenetic regulation that is involved in the pathogenesis of both familial and sporadic PD. We determined the global methylation status of 80,000e110,000 Cp G sites in each of the five sporadic PD patient brains and five age and postmodern interval matched control brains utilizing bisulfite padlock sequencing. Multiple genes involved in neurogenesis, particularly the ones in the Wnt signaling pathway, were hypermethylated in PD brains compared to their matched control brains. Consistent with the DNA methylation changes, marked reduction of protein expression was observed for four Wnt and neurogenesis related genes(FOXC1, NEURG2, SPRY1, and CTNNB1) in midbrain dopaminergic(DA) neurons of PD. The treatment of low concentration of 1-methyl-4-phenylpyridinium(MPPt) for cells resulted in downregulation of Wnt related genes. The study revealed an important link between the epigenetic disregulation of Wnt signaling and the pathogenesis and progression of PD.
基金supported by grants from the Chinese National Science Foundation(ZZ,KX,DLW)the NIH/NIDCD(ZZ).
文摘Hearing impairment(HI)affects 1/1000 children and over 2%of the aged population.We have previously reported that mutations in the gene encoding gap junction protein connexin-31(Cx31)are associated with HI.The pathological mechanism of the disease mutations remains unknown.Here,we show that expression of Cx31 in the mouse inner ear is developmentally regulated with a high level in adult inner hair cells and spiral ganglion neurons that are critical for the hearing process.In transfected cells,wild type Cx31 protein(Cx31wt)forms functional gap junction at cell-cell-contacts.In contrast,two HIassociated Cx31 mutants,Cx31R180X and Cx31E183K resided primarily in the ER and Golgi-like intracellular punctate structures,respectively,and failed to mediate lucifer yellow transfer.Expression of Cx31 mutants but not Cx31wt leads to upregulation of and increased association with the ER chaperone BiP indicating ER stress induction.Together,the HI-associated Cx31 mutants are impaired in trafficking,promote ER stress,and hence lose the ability to assemble functional gap junctions.The study reveals a potential pathological mechanism of HI-associated Cx31 mutations.
文摘By homologous expressed sequence tag (EST) searching, one EST (GenBank: W29095) was obtained, which shows 75% identity in 435 bp overlap with the coding sequence of mouse Cacng2 gene. A 1 545 bp cDNA fragment was obtained from the nested polymerase chain reaction (PCR) and rapid applification of cDNA end (RACE) reaction in the human brain prefrontal cortex cDNA library and the human brain Ready cDNA with the primers designed on W29095. The fragment contained a 948-bp open reading frame (ORF) encoding 315 amino acids, and was named CACNG3. As it was identical to a BAC clone (GenBank: AC004125) from chromosome 16p12-p13.1, the CACNG3 gene was mapped to human chromosome 16p12-p13.1, and the coding region was composed of 4 exons. Reverse transcription PCR (RT-PCR) analysis showed that the CACNG3 gene expressed in human adult brain and fetal brain. Single strand comformation polymorphism (SSCP) analysis was performed in 3 pedigrees with autosomal recessive retinitis pigmentosa, 8 pedigrees with autosomal
基金supported by funds from the National Key R&D Program of China (2020YFA0707800 to W.W., 2020YFA0707600 to Z.Z.)Beijing Municipal Science & Technology Commission (Z181100001318009)+4 种基金the National Natural Science Foundation of China (31930016)Beijing Advanced Innovation Center for Genomics at Peking University and the Peking-Tsinghua Center for Life Sciences (to W.W.)the National Natural Science Foundation of China (31870893)the National Major Science & Technology Project for Control and Prevention of Major Infectious Diseases in China (2018ZX10301401 to Z.Z.)China Postdoctoral Science Foundation (2020M670031 to Y.L.)
文摘The outbreak of coronavirus disease 2019(COVID-19) caused by SARS-CoV-2 has created a global health crisis. SARS-CoV-2 infects varieties of tissues where the known receptor ACE2 is low or almost absent, suggesting the existence of alternative viral entry pathways. Here, we performed a genome-wide barcoded-CRISPRa screen to identify novel host factors that enable SARS-CoV-2 infection. Beyond known host proteins, i.e., ACE2, TMPRSS2, and NRP1, we identified multiple host components,among which LDLRAD3, TMEM30A, and CLEC4G were confirmed as functional receptors for SARS-CoV-2. All these membrane proteins bind directly to spike’s N-terminal domain(NTD). Their essential and physiological roles have been confirmed in either neuron or liver cells. In particular, LDLRAD3 and CLEC4G mediate SARS-CoV-2 entry and infection in an ACE2-independent fashion. The identification of the novel receptors and entry mechanisms could advance our understanding of the multiorgan tropism of SARS-CoV-2, and may shed light on the development of COVID-19 countermeasures.
文摘When people try to decide to buy or not to, they are often influenced by both their inherentopinions and the social marketing activities e.g. advertising, social news with strong point of view.Then people will make their final choice, or even convince other people to buy. After all, this is thebrand acceptance formation process. Factually, the dynamics of brand acceptance is essentially aninterwoven dynamics of endogenous opinion dynamics disturbed by an information diffusion process.To have a better understanding of the dynamics of brand acceptance, we propose and analyze a coupledagent-based dynamic model that combines the Majority-Rule-based Voter model in opinion dynamicswith the SI Model for information spreading to analyze the dynamics of brand acceptance in socialmedia. We focus on two important parameters in diffusion dynamics: the decayed transmission rate (fl)and the diffusion frequency (f). When the system is stable, the order parameter of the system is theduration time (r). In the absence of opinion interaction, the simulation results indicate that, when abrand tries to occupy a larger market share through social marketing approaches, it is always effectiveto let the opponent to be the propaganda target. While with the Majority-Rule-based Voter Modelincluded, we observe that the opinion interaction could have a dual function, which shows that a brandholding a small market share in the first place needs to adopt diverse marketing approaches accordingto different marketing environment types.