期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Dynamic Resource Allocation Strategy with Reinforcement Learning for Multimodal Multi-objective Optimization 被引量:2
1
作者 qian-long dang Wei Xu Yang-Fei Yuan 《Machine Intelligence Research》 EI CSCD 2022年第2期138-152,共15页
Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computi... Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computing resources for subspaces with different difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy(DRAS)with reinforcement learning for multimodal multi-objective optimization problems(MMOPs). In DRAS, relative contribution and improvement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the reinforcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better distributed equivalent Pareto optimal solutions in the decision space. 展开更多
关键词 Multimodal multi-objective optimization(MMO) dynamic resource allocating strategy(DRAS) reinforcement learning(RL) decision space partition zoning search
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部