Realizing single light solitons that are stable in high dimensions is a long-standing goal in research of nonlinear optical physics.Here,we address a scheme to generate stable two-dimensional solitons in a cold Rydber...Realizing single light solitons that are stable in high dimensions is a long-standing goal in research of nonlinear optical physics.Here,we address a scheme to generate stable two-dimensional solitons in a cold Rydberg atomic system with a parity-time(PT) symmetric moiré optical lattice.We uncover the formation,properties,and their dynamics of fundamental and two-pole gap solitons as well as vortical ones.The PT symmetry,lattice strength,and the degrees of local and nonlocal nonlinearity are tunable and can be used to control solitons.The stability regions of these solitons are evaluated in two numerical ways:linear-stability analysis and time evolutions with perturbations.Our results provide an insightful understanding of solitons physics in combined versatile platforms of PT-symmetric systems and Rydberg–Rydberg interaction in cold gases.展开更多
Posttranscriptional regulations of different types of RNA,including rRNA,tRNA,mRNA and ncRNA are widely involved in normal physiology and diseases.m RNA,as the intermediary product between gene and protein,whose postt...Posttranscriptional regulations of different types of RNA,including rRNA,tRNA,mRNA and ncRNA are widely involved in normal physiology and diseases.m RNA,as the intermediary product between gene and protein,whose posttranscriptional regulations such as alternative splicing,alternative polyadenylation and modifications impact its coded protein expression and functions.However,the functional significance and therapeutic potential of RNA posttranscriptional regulations are not well studied due to the lack of suitable RNA engineering platforms.The discovery of a novel CRISPR-Cas system termed CRISPR-Cas13 in 2015 that specifically targets RNA templates brought a new role to CRISPR to target and edit RNA with high specificity,which opened a new era of RNA manipulations to some degree.This review will summarize the emerging applications of the catalytically inactive CRISPR-Cas13 system(CRISPR-dCas13)in mRNA engineering and highlight the prospection of the CRISPR-dCas13 system for other RNA modification regulations and its therapeutic potential.展开更多
As the central organ of the human body,once the heart is damaged,it will cause devastating damage to the circulation system of the whole body,often leading to rapid death.Currently,the only treatment option to stop bl...As the central organ of the human body,once the heart is damaged,it will cause devastating damage to the circulation system of the whole body,often leading to rapid death.Currently,the only treatment option to stop bleeding in penetrating cardiac injuries is surgical suturing,which is extremely complex and risky.In addition,it is difficult to implement this kind of treatment in battlefields with poor medical conditions.Therefore,there is an urgent need to develop an effective cardiac hemostasis strategy.In this work,we propose a two-step hemostasis strategy that can effectively stop bleeding for penetrating heart injuries.That is,cardiac hemostatic plug(CHP)is made from the nanocomposite(polylactic acid/gelatin/absorbable hemostatic particles,PLA/GEL/AHP)with high biosafety,excellent hemostatic performance,and degradability which is used to block cardiac bleeding,and then wound surface is sealed by in-situ electrospun medical glue fibers(N-octyl-2-cyanoacrylate,interfacial toughness:221±23 J·m−2),thus completing cardiac hemostasis(porcine heart with 1 cm diameter penetrating wound).The hemostasis process is simple and quick(<2 min).In addition,it is worth mentioning that we have also proposed a new composite method based on solution blow spinning that is suitable for doping various functional particles,and the PLA/GEL/AHP composite nanofiber membrane prepared by this method is also a promising hemostatic material.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62275075,11975172,and 12261131495)the Shanghai Outstanding Academic Leaders Plan (Grant No.20XD1402000)the Training Program of Innovation and Entrepreneurship for Undergraduates of Hubei Province (Grant No.S202210927036)。
文摘Realizing single light solitons that are stable in high dimensions is a long-standing goal in research of nonlinear optical physics.Here,we address a scheme to generate stable two-dimensional solitons in a cold Rydberg atomic system with a parity-time(PT) symmetric moiré optical lattice.We uncover the formation,properties,and their dynamics of fundamental and two-pole gap solitons as well as vortical ones.The PT symmetry,lattice strength,and the degrees of local and nonlocal nonlinearity are tunable and can be used to control solitons.The stability regions of these solitons are evaluated in two numerical ways:linear-stability analysis and time evolutions with perturbations.Our results provide an insightful understanding of solitons physics in combined versatile platforms of PT-symmetric systems and Rydberg–Rydberg interaction in cold gases.
文摘Posttranscriptional regulations of different types of RNA,including rRNA,tRNA,mRNA and ncRNA are widely involved in normal physiology and diseases.m RNA,as the intermediary product between gene and protein,whose posttranscriptional regulations such as alternative splicing,alternative polyadenylation and modifications impact its coded protein expression and functions.However,the functional significance and therapeutic potential of RNA posttranscriptional regulations are not well studied due to the lack of suitable RNA engineering platforms.The discovery of a novel CRISPR-Cas system termed CRISPR-Cas13 in 2015 that specifically targets RNA templates brought a new role to CRISPR to target and edit RNA with high specificity,which opened a new era of RNA manipulations to some degree.This review will summarize the emerging applications of the catalytically inactive CRISPR-Cas13 system(CRISPR-dCas13)in mRNA engineering and highlight the prospection of the CRISPR-dCas13 system for other RNA modification regulations and its therapeutic potential.
基金This work was supported by the National Natural Science Foundation of China(Nos.51973100 and 11904193)the National Key Research and Development Project of China(No.2019YFC0121402)+1 种基金the State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University(Nos.RZ2000003334,ZDKT202108,and G2RC202022)Shandong Province Introduction of Top Talents(Team)One Thing,One Discussion(DC1900013728).
文摘As the central organ of the human body,once the heart is damaged,it will cause devastating damage to the circulation system of the whole body,often leading to rapid death.Currently,the only treatment option to stop bleeding in penetrating cardiac injuries is surgical suturing,which is extremely complex and risky.In addition,it is difficult to implement this kind of treatment in battlefields with poor medical conditions.Therefore,there is an urgent need to develop an effective cardiac hemostasis strategy.In this work,we propose a two-step hemostasis strategy that can effectively stop bleeding for penetrating heart injuries.That is,cardiac hemostatic plug(CHP)is made from the nanocomposite(polylactic acid/gelatin/absorbable hemostatic particles,PLA/GEL/AHP)with high biosafety,excellent hemostatic performance,and degradability which is used to block cardiac bleeding,and then wound surface is sealed by in-situ electrospun medical glue fibers(N-octyl-2-cyanoacrylate,interfacial toughness:221±23 J·m−2),thus completing cardiac hemostasis(porcine heart with 1 cm diameter penetrating wound).The hemostasis process is simple and quick(<2 min).In addition,it is worth mentioning that we have also proposed a new composite method based on solution blow spinning that is suitable for doping various functional particles,and the PLA/GEL/AHP composite nanofiber membrane prepared by this method is also a promising hemostatic material.